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Abstract

Advances in portable electrocardiogram (ECG) moni-
toring devices has allowed for new cardiovascular appli-
cations to emerge beyond diagnostics, such as stress de-
tection, sleep disorder characterization, mood recognition,
activity surveillance, or fitness monitoring, to name a few.
Such devices, however, are prone to artifacts, particularly
due to movement, thus rendering heart rate and heart rate
variability (HRV) metrics useless. To address this issue,
this paper proposes a new ECG quality enhancement algo-
rithm based on filtering in the so-called spectro-temporal
(or modulation spectral) domain. Our experiments show
that this new signal representation accurately separates
ECG signal and noise components, thus allowing for adap-
tive filtering to improve signal quality even in extremely
noisy settings. Experimental results show the proposed
algorithm outperforming a state-of-the-art wavelet-based
enhancement algorithm in terms of signal-to-noise ratio
improvement, as well as ECG kurtosis; the latter has been
widely used in the literature as an ECG quality index. The
obtained findings suggest that the proposed algorithm can
be used to enhance the quality of wearable ECG monitors
even in extreme conditions, thus can play a key role in ath-
letic peak performance training/monitoring.

1. Introduction

The increased risk of cardiovascular diseases, stress, hy-
pertension, obesity, sleep disorders, and depression has
motivated the use of portable (wearable) electrocardio-
gram (ECG) monitors for health diagnosis, but other mar-
ket segments beyond medical applications are also emerg-
ing [1]. Low-cost, portable ECG devices, however, have
been shown to be sensitive to numerous artifacts, includ-
ing muscle contractions, baseline wander, and movement
[2], thus lowering signal quality and, ultimately, hamper-
ing heart rate and heart rate variability (HRV) analyses [3].
To overcome this limitation, ECG quality enhancement al-
gorithms are drastically needed that can operate under a
wide range of noise levels.

Typically, three main methods have been explored in
the past for ECG quality enhancement: filtering, empiri-
cal mode decomposition (EMD), or wavelet shrinkage. In
[4], for example, ECG denoising was done using multi-
ple iterations of a moving average filter and gains could be
seen for noisy signals with a in signal-to-noise ratio (SNR)
of around 10 dB. In [5], in turn, nonlinear Bayesian fil-
tering was performed and tested on signals corrupted by
white and coloured gaussian noises; some filter stability
issues were reported in extremely noisy settings and in the
presence of arrhythmias. EMD-based algorithms, such as
the one proposed in [6], rely on removal of mode func-
tions mostly affected by the artifacts. Lastly, wavelet-
based algorithms are the most popular and works such as
[7] and [8] rely on principles of shrinkage/thresholding.
For wavelet-based algorithms, several parameters, such as
mother wavelet, number of decomposition levels, thresh-
olding selection rule, and thresholding method need to be
optimized beforehand in an ad-hoc manner.

Here, we overcome these limitations by proposing a
new algorithm based on adaptive filtering in the spectro-
temporal domain, also known as modulation spectral do-
main. This signal representation characterizes the rate-of-
change of ECG spectral components, which was recently
shown to differ from the rate-of-change of artifactual com-
ponents, and to be independent of cardiac signal abnormal-
ities [9]. By utilizing two invertible transforms to obtain
the signal representation, filtering can be performed in the
modulation spectral domain and the enhanced signal can
be reconstructed. Such an approach has been used suc-
cessfully for speech enhancement [10]. Experiments with
synthetic ECG corrupted by realistic artifacts show the
proposed algorithm outperforming a wavelet-based bench-
mark in terms of SNR and ECG kurtosis improvement; the
latter being a widely-used quality index [11,12].

2. Methods and materials

In this section, we explain the signal processing steps to
calculate the ECG modulation spectrum, the modulation
spectral filtering scheme, as well as the ECG database, the
benchmark algorithm, and the performance metrics used.



Figure 1. Signal processing steps to calculate the ECG modulation spectrum. Modulation spectrograms corresponds to a
noisy ECG signal with 120 bpm and anSNR = −10dB at the top, and its clean counterpart at the bottom.

2.1. Modulation spectrum and filtering

The processing steps required to obtain the ECG mod-
ulation spectral signal representation are depicted by Fig-
ure 1. First, the ECG signal (here sampled at 256 Hz) is
segmented using a 32-point sine window with 75% over-
lap and transformed to the conventional time-frequency
domain (x(t, f)) using a 512-point Fast-Fourier transform
(FFT). Spectral magnitude components are then also seg-
mented over time using a 128-point window with 75%
overlap. A 512-point FFT across the time axis is per-
formed to result into a final frequency-frequency represen-
tation (x(fm, f)) known as “modulation spectrum,” where
f denotes conventional frequency andfm modulation fre-
quency, both represented in Hz.

As can be seen from the right-hand side of Fig. 1 (bot-
tom), for a clean ECG signal, the representation is com-
prised (along thefm axis) of a central frequency, corre-
sponding to the heart rate (in the case of the figure, 120
beats per minute, bpm), its harmonics, as well as a com-
ponent atfm = 0 Hz corresponding to stationary compo-
nents of the ECG signal. Along the conventional frequency
axis, most of the energy is concentrated belowf < 40Hz,
as expected. The top right-hand plot of the figure, on the
other hand, shows the effects of noise on the signal repre-
sentation. At an SNR of -10dB, increased frequency com-
ponents beyondf = 40 Hz can be seen atfm = 0 Hz, thus
suggesting an increase in stationary noise, as well as in-
creased modulation spectral energy between the main lobe
and its harmonics (along thefm axis).

Given these insights, we propose the use of a series of
adaptive bandpass filters in the modulation spectral do-
main. Bandpass filters are centred at the main lobe and sev-

eral of its harmonics. The choice of windows and overlap
used herein, inspired by the work in [9], result in a mod-
ulation spectral representation with maximumfm = 16
Hz, thus the number of bandpass filters used depends
on the signal’s measured heart rate and range from 5-10
harmonics in the experiments described herein. To find
the signal’s instantaneous heart rate, we search for max-
imum modulation energy between0 ≤ f ≤ 40 Hz and
0.8 ≤ fm ≤ 3.3 Hz, thus corresponding to heart rates be-
tween50 ≤ HR ≤ 200 bpm. Since ECG components at
fm = 0 Hz were severely affected by noise, they are dis-
carded completely at the cost of imperfect reconstruction
of the ECG signal. While this can lead to issues with diag-
nostics where perfect QRS complexes are needed, for the
task at hand (i.e., measure HR/HRV metrics) it was not a
factor. Alternate strategies on how to handle this lowpass
stationary components are still needed for diagnostics.

The signal processing steps for the proposed spectro-
temporal filtering are depicted in Figure 2. The short-
term spectral component is denoted bys(f,m), where
f = 1, ..., N (fth frequency bin with N total number of
frequency bands), andm = 1, ..., T (mth time step with T
total number of time steps). Then, a Fast-Fourier transform
is taken where the|s(f,m)| magnitude for each frequency
bin is filtered up tof = 40Hz and< s(f,m) phase is
compensated. Each modulation processing bin has a bank
of B adaptive linear-phase Finite Impulse Response (FIR)
bandpass filters with length 432 to generate|ŝb(f,m)|.
The bandwidth for the modulation bandpass filters was
taken as0.625Hz based on insights from [3]. As men-
tioned above, the number of bandpass filters (B) is adapa-
tive to the signal’s measured heart rate. After filtering, the



Figure 2. Signal processing steps used in the proposed modulation filtering method.

Figure 3. Noisy and enhanced ECG signals (60 bpm).

|ŝb(f,m)| are added and compensated using a half wave
rectification (HWR) due to negative power spectral val-
ues that can result from low frequency removal. Moreover,
the phase is delayed by 216 samples resulting in6 ŝ(f,m).
Finally, the processed magnitudes and phases from the N
bins are transformed via an inverse Fourier transform into
ŝ(m) to be then windowed and overlap-added to obtain an
enhanced ECG signal. For comparison purposes, Fig. 3 de-
picts an ECG signal with 60 bpm andSNR = 0dB before
(top) and after wavelet (middle) and the proposed (bottom)
modulation filtering schemes.

2.2. ECG dataset

Synthetic ECG signals with 2-minute duration were
generated using the ‘ecgsyn’ Matlab function available
within Physionet [13]. We created 700 signals ranging
from 50 to 180 bpm to cover tachycardia, bradycardia,
and different activity levels such as sitting, walking, and
running. The signals were generated to include low fre-
quency to high frequency ratio (LF/HF) between 0.5 and
8.9 randomly sampled to cover light-to-deep sleep, wake-

fulness, myocardial infarction, and rapid eye movement
[2]. The synthetic signals were contaminated with artifacts
(i.e., electrode motion, muscle artifacts, and baseline wan-
der noise) taken from MIT-BIH Noise Stress Test Database
[13] at five different signal-to-noise (SNR) levels such as
-10, -8, -5, 0, and 5 dB. We also used pink and brown-
ian noise to model observation noise and electrode move-
ment artifacts respectively. Hence, we have 4900 signals
for analysis, totalling 163 hours for testing.

2.3. Benchmark algorithm and perfor-
mance assessment metrics

As mentioned above, wavelet-based denoising algo-
rithms are the most popular, thus are used here to bench-
mark the proposed algorithm. A subset of 100 signals,
each corrupted by the five SNR levels, was used to opti-
mize benchmark algorithm parameters. It was found that
the universal shrinkage method with soft thresholding, and
a Daubechies mother wavelet with 8 decomposition levels
resulted in the best performance on this subset. As such,
this configuration was used in our experiments.

As figures of merit to gauge the advantages of the pro-
posed algorithm, two metrics were used: (1) the kurtosis
(κ) measured within a window around the R peaks in the
QRS complexes, and (2) the SNR improvement post en-
hancement. According to [11, 12] higher kurtosis values
correspond to improved quality and values ofκ ≥ 5 typi-
cally correspond to good quality ECGs.

3. Results and discussion

Table 1 showsκ and post-enhanced SNRs for the pro-
posed and benchmark algorithms before and after enhance-
ment. It can be seen that the average SNR improvement
for noisier signals (SNR=-10, -8, -5, and 0 dB) with the
proposed algorithm was 9 dB compared to 4 dB with the
benchmark. SNR improvements increased for noisier sig-



Table 1. Performance comparison between proposed and benchmark algorithms before and after enhancement.
Noisy Proposed Benchmark

Input SNR (dB) κ Post-SNR (dB) κ Post-SNR (dB) κ

−10 3.1± 0.0 1.4± 1.2 6.2± 1.5 −2.3± 0.1 3.0± 0.1
−8 3.4± 0.0 2.5± 1.3 7.3± 1.6 −2.0± 0.2 3.5± 0.1
−5 4.2± 0.2 3.9± 1.2 8.6± 1.7 −1.2± 0.2 4.4± 0.3
0 5.6± 0.4 5.5± 0.9 10.0± 1.7 1.2± 0.2 5.8± 0.6
5 6.3± 0.6 6.4± 0.7 10.7± 1.7 5.0± 0.2 6.5± 0.8

nals. Moreover,κ measurements were higher with the
proposed algorithm across all tested SNR levels, thus sug-
gesting improved quality over the benchmark. An average
κ increase over the noisy signal of4 was obtained with
the proposed algorithm, thus outperforming the subtle in-
crease of0.1 obtained with the benchmark. Using theκ
threshold of 5 suggested in [11, 12] to indicate good qual-
ity ECG, this could be achieved with the proposed solu-
tion even in extremely noisy cases (SNR = -10 dB), thus
comparing favourably against the benchmark which only
achieved this at an SNR = 0 dB. Overall, the proposed so-
lution had a higherκ standard deviation, which seemed
to be around 1.6 irrespective of the tested SNR. Despite
the higher deviation, theκ increases with the proposed al-
gorithm were significantly higher than those achieved with
the benchmark across all SNR levels. Overall, the obtained
findings suggest that the proposed algorithm may be bet-
ter suitable for ECG quality enhancement, particularly in
extremely noisy scenarios.

4. Conclusion

A new method to denoise ECG signals was proposed
based on adaptive filtering in the modulation spectral do-
main. The algorithm was tested on 163 hours of ECG data
of varying noise levels and shown to outperform a state-of-
the-art benchmark algorithm based on wavelet shrinkage
in terms of SNR improvement and ECG kurtosis increase.
The obtained findings suggest that the proposed technique
is well suitable for lower-cost wearable ECG devices that
can be highly contaminated by movement artifacts.
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