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Abstract—The key to the development of adaptive gameplay is
the capability to monitor and predict in real time the players
experience (or, herein, fun factor). To achieve this goal, we
rely on biometrics and machine learning algorithms to capture
a physiological signature that reflects the player’s affective
state during the game. In this paper, we report research and
development effort into the real time monitoring of the player’s
level of fun during a commercially available video game session
using physiological signals. The use of a triple-classifier system
allows the transformation of players’ physiological responses and
their fluctuation into a single yet multifaceted measure of fun,
using a non-linear gameplay. Our results suggest that cardiac
and respiratory activities provide the best predictive power.
Moreover, the level of performance reached when classifying
the level of fun (70% accuracy) shows that the use of machine
learning approaches with physiological measures can contribute
to predicting players experience in an objective manner.

I. INTRODUCTION

The video game industry has seen in the past decades
an exponential market growth. Only in the last 10 years
in the United States the revenues coming from computer
and video games increased imposingly, from 7.3 in 2004
to 15.4 bn $ in 2014. If the money spent on accessories
and hardware is also considered, the figure grows to 22.41
bn $ [1]. Players value that their money are more cleverly
spent with videogames compared to movies or music [2]. One
reason for the preference of videogames over other means of
entertainment is that having an immediate feedback keeps the
engagement high. One factor of retention of players is whether
their gameplay experience is positive [1].

Quantifying the extent to which a players experience is
positive throughout his or her gameplay remains a challenge.
Efforts have been made by numerous playtest laboratories in
the gaming industry but there are still shortcomings to the
objective evaluation of the player’s fun. Most experiments
are conducted using empirical and subjective methods (i.e.
interviews, focus groups questionnaires). In the academia,
systematic methods have been explored, in particular the use of
affective computing technologies [3], [4] and machine learning
algorithms, but with limited combinations of physiological
measures and its weak association with the fun-factor. In this
context, the field of automated affective states computation
has grown with the aim of creating affective video games.

Most of the work has focused on the comprehension of simple
parameters of emotions and cognitive states studied in the
affective Brain Computer Interface field [3], such as valence
and arousal. Some authors also suggest that fun is not a unitary
concept, which might add to the challenge of quantifying it.
Lazzaros [5] model proposes 4 types of fun (e.g.: players
seeking hard fun enjoy challenges, but players seeking people
fun play for the social interaction). Poels, Kort and IJsselsteijn
[6] suggest up to 9 dimensions to describe the video game
experience. Evidence suggests that the different dimensions
of fun are associated with distinct neurophysiological patterns
[7]. These various reactions might increase the difficulty of
using physiological measures to assess fun. Additionally, some
authors suggest that fun is not directly measurable. Sweetser
and Wyeth [8] suggest a model of enjoyment based on the
flow theory [9] while others (e.g.: Calleja [10]) center their
models on incorporation (i.e.: assimilation in the game while
giving a sense of embodiment to the player). In a first effort
to capture the relationship between several physiological and
behavioral markers with the players experience, we chose to
conceptualize fun as unidimensional since it is the easiest
way for players to report their experience in relation to a
videogame.

In the gaming literature, fun has been related to positive
player reactions during a gameplay session. It has been linked
to emotional experience but it is not considered as an emotion
itself [11]. It is generally linked to different affective states, but
as described in Pagulayan et al. [12], since games are intended
to be fun, assessing fun implies assessing the overall quality
of the game. The same authors [12] also point out that there
might be a need to consider fun as being different in every user,
thereby attributing a high contribution of individual influences
to its assessment. Moreover, the work of Nacke et al. [13]
mentions that when studying video games with physiological
signals, there is a need to connect also other affective measures
(e.g. behavioral responses) to establish relationships between
the players experience and physiological responses (here we
used a continuous measure of fun that will be described in Sec.
II-B3). Thus, the fun-factor can potentially be analyzed in a
study that combines objective measures such as physiological
responses with subjective components qualifying the player’s



experience [14], [15].
Computational models of fun have been designed in the

past with the purpose of generating personalized game levels.
For instance, in the work of Pedersen et al. [16], the authors
were able to predict player emotions (e.g. fun, challenge
and frustration) using preference learning and neuroevolu-
tion and the well known console game Super Mario Bros.
A weighted non-linear computational model (e.g. artificial
neural network) for reported emotions was constructed and
the authors concluded that fun is the hardest dimention to
model with a nonlinear perceptron and the least correlated
with the features they extracted. Moreover, Shaker et al. [17]
modeled player’s fun value in platform games using a Multi
Layer Perceptron Model. The authors obtained 69.66% of
accuracy when modeling fun (using 58 features), but they also
highlighted the limitation of post-experience analysis. For this
reason they propose the use of physiological measures for
further investigation, together with an increased number of
features.

Several studies used physiological signals to quantify af-
fective states during video game play ([18], [19], [14]). For
instance, in the work of [15], the authors quantified emo-
tional experience under the two dimensions of valence and
arousal, to determine real-time emotional states. The latter
were estimated using physiological signals such as Elec-
trodermal Activity (EDA), Electrocardiography (ECG) and
Electromyography (EMG). From the data of the two affective
dimensions (i.e. valence and arousal), the authors were able
to determine five distinct states during gameplay: boredom,
challenge, excitement, frustration and fun. The problem that
the authors revealed was that there are no guidelines for
transforming assessments of arousal and valence into levels
of fun in a continuous scale. Moreover, several affective states
(i.e. boredom, frustration, challenge, anxiety, excitement) have
been shown to correlate with ECG, EDA and EMG [20], but
not a lot of effort has been made on the evaluation of the
fun-factor itself.

Furthermore, using only signal processing techniques re-
duces a meaningful and natural interaction with the game.
The introduction of a machine with automated emotional
intelligence based on physiological responses would be able
to learn negative and positive inputs and take care of player’s
need. Many studies have focused on detecting and learning
emotional states, combining biometric signals and machine
learning algorithms. In the work presented by Liu et al. [21],
the authors studied different machine learning techniques for
affective computing tasks. The authors used anxiety, engage-
ment, boredom, frustration and anger as affective states and
a questionnaire for self-reporting. The best performance was
obtained using the Support Vector Machine (SVM) classifier
in comparison with K-Nearest Neighbor, Regression Tree,
Bayesian Networks. But developing video game affective
systems, however, is a challenging task and many open prob-
lems and questions persist. For example, which physiological
signal modalities should be combined to measure an affective
dimension directly related to the level of player’s level of

fun? Which features convey such task effectively? Which
characteristics of the classifier are better adapted to the task
at hand? Is it really relevant to address the detection of fun as
an individual factor?

In recent years, effort has been made for real time adaptation
of video games using biometrics. For instance in the work of
Rani et al. [22], the authors classified three level of intensity
(low, medium and high) for different emotions (engagement,
anxiety, boredom, frustration and anger) using a Pong game
and anagram puzzle. Parameters of the game were manipulated
to elicit the required affective response. Cardiac activity, EDA,
EMG and skin temperature were used along with four different
classification methods. The best accuracy result was reached
with the SVM classifier and 86% of accuracy. The results
are promising but the work focused on the study of affective
dimensions that only give an idea of a general fun level.
Another example of work that used a more complex and
dynamic system, designed to adjust several parameters in the
game over time based on the player’s physiological signals,
was conducted by Chanel et al. [23]. In this case the authors
reached 53% of accuracy using an SVM classifier when dis-
criminating three emotional states (boredom, engagement and
anxiety) using peripheral signals as EDA, blood pressure, heart
rate, Respiration (RESP), temperature and self reported labels.
The number of features extracted might be determinant for the
final result. In this last example there is a few features (only
14 features were computed from the signals). The extraction
of a large number of features allows the machine learning
algorithm to have access to a larger amount of information,
otherwise not detectable in the case of a limited number of
features.

The purpose of this paper is the design of a predictive model
that is able to discriminate the fun experience of players, based
on theirs physiological responses, as measured by indicators of
ECG, EMG, EDA and RESP, together with a self-reported con-
tinuous measure of fun and the best classification system. Our
main goal is to identify a physiological signature of the fun-
factor associated with positive gaming experiences, together
with the best classifier traits in order to create an adaptive
video game according to prediction of players’ affective and
cognitive states. To achieve this, we used an innovative method
that allows for continuous rating of fun during gameplay. This
method provides an advantage over subjective measures by
providing a high-temporal resolution of the fun rating instead
of a single value for a given time period. Furthermore, fun
ratings are converted to trends (i.e.: ordinal scales), which is
considered to reduce biases associated with human self-rating
of emotions [24]. Finally, the present study uses an off-the-
shelf and modern video game, thus increasing its ecological
validity and application to future work.

II. METHODS AND MATERIALS

A. Participants

Sixty-two participants (5 women and 57 men) aged between
18 and 35 years (M = 25.9, SD = 4.9) were recruited
from Université Laval and from Ubisoft Québec’s volunteer



database to participate in a single two-hour experiment session.
They all had prior game experience with the Assassin’s Creed
series, but had never played the specific title used in the current
study. They all had normal or corrected-to normal vision and
audition, and reported having no cognitive or neurological
impairment. Participants received 20$ for their participation
at the end of the experiment.

B. Apparatus and procedure

1) Computer game: Participants were asked to play
the computer version of Assassin’s Creed Unity -an ac-
tion/adventure game developed by Ubisoft in 2014 (see a
screenshot of the game at the top of Fig. 1)- with an Xbox 360
Controller. Two missions were specifically selected for this
experiment: ‘The prophet’ and ‘The escape’. The objective
of this action-adventure game taking place in Paris during
the French Revolution, played from a third-person view, is
to complete pre-determined objectives to progress through the
story. It is a non-liner gameplay, meaning that outside of the
prefixed quests, the player can freely roam in the open world;
thus giving the player more degrees of freedom compared to
a linear gameplay.

2) Procedure: Participants read through a tutorial displayed
on the computer screen describing the gameplay mechanics
and explaining the procedure required to perform the different
possible actions with the Xbox Controller. Participants were
then familiarized with the game environment during a period
of 5 minutes in which they had to complete seven objectives,
all associated with the gameplay mechanics described in
the tutorial (e.g., use a smoke bomb, climb up a building,
assassinate an enemy while using a firearm). After successful
completion of the objectives, a physiological resting baseline
was recorded during a 3-minute period. Participants were in-
structed to remain calm and to refrain from moving while they
were looking at a black fixation cross on a white screen and
heard white noise via their headphones. Participants were then
asked to play the first mission (presented in a counterbalanced
order). The mission ended either when it was completed or
after 15 minutes if participants failed completing it. The same
procedure was repeated for the second mission.

Fig. 1: Graphic interface developed in order to give players a
visual feedback of their fun ratings.

Fig. 2: USB controller (PowerMate, Griffin Technology) used
to rate the level of fun.

3) Continuous measure of fun: After each mission, partici-
pants were required to watch a playback of their game session
and to rate continuously the fun they felt during the game using
a USB controller (PowerMate, Griffin Technology) shown in
Fig. 2. This USB controller was an infinite control knob with
no feedback (clicks) on the knob position. This controller was
linked to a custom-made visual interface that allowed online
graphic representation of the participant’s evaluation of fun in
real-time. As shown at the bottom of Fig. 1, the green areas
correspond to positive levels of fun, while negative levels were
depicted in the red areas. The level of fun was sampled at 30
Hz. Fun ratings were then transposed to a -100 to 100 scale
for analysis.

4) Psychophysiological measurement: The player’s physi-
ological signals were collected during the two missions and
during the replays (data from the replay were not used in
this study). Electrodermal, cardiac, electromyographic and
respiratory activities were recorded using a MP150 Biopac sys-
tem (Biopac System Inc., Santa Barbara, CA). Electrodermal
activity was measured using two pre-gelled electrodes placed
on the palm of the left hand (the site was chosen in order
not to have interferences with the controller). Cardiac activity
was measured with three thoracic electrocardiogram electrodes
placed in a Lead II configuration. The electromyographic
signal was detected from the long abductor muscle of the
right thumb with three pre-gelled electrodes placed on the
right forearm. A respiration belt transducer placed around the
player’s chest measured respiratory activity (see Fig. 3 for the
system’s design). Cardiac activity was sampled at 1000 Hz
whereas respiratory and electrodermal activities were sampled
at 125 Hz using the Acqknowledge 4.3 data acquisition
software. All psychophysiological signals were up-sampled to
1000 Hz (for synchronization purpose) and bandpass filtered
(EDA 0-1 Hz, ECG 1-20 Hz, EMG 10-500 Hz and RESP
0-0.7 Hz). No further preprocessing has been conducted on
the physiological signals since this study was designed as a
prequel to a real time application. The signals and the self-
assessment measure of fun were divided into epochs. The
epochs were designed to last five seconds and an overlapping
window of 2.5 seconds.



C. Analysis of fun

Three different situations of the self-reported measure of fun
were identified. The first two corresponded to an increasing
and a decreasing trend in the fun rating, respectively. For
classification purposes, they were identified as the first two
classes and labeled fun ‘increasing’ or ‘decreasing’ (+1 and -1
respectively). The third possible situation arose when studying
a stable segment of fun rating, which provided two additional
classes. We considered as high-stable fun the ratings that were
stable but at a level above the average fun value of the whole
mission, and low-stable fun at levels below the average level.
These two other classes were labeled as fun ‘above-average’ or
‘below-average’ (+0 and -0 respectively). To summarize, out
of each epoch, the classification analysis will output one of the
four classes described above (see Sec. II-F below). Depending
of the sign of the class (positive or negative) the software
will then apply the modification in the game. In particular,
with a positive output (+1 and +0), fun was either increasing
or stable but over the average, thus in a adaptive scenario
the game would not need any adjustment because the player
is categorized as satisfied. However, in the case of negative
classes (-1 and -0), a real time adjustment of the game would
become essential to increase the fun.

D. Feature Extraction

A total number of 488 features were extracted from the four
physiological signals as follows:

ECG The largest number of features is obtained from each
electrocardiographic signal, such as 90 extracted fea-
tures categorized into four different groups: spectral
power with the fast Fourier transform (FFT) in
multiple subbands, statistical components (average,
min, max etc.), statistical features extracted from
the analysis of separated parts of the QRS complex
[25], and, finally, from the analysis of the Heart Rate
Variability (HRV). Moreover, normalized versions of

Fig. 3: Experiment set-up for dataset collection.

these 90 features were also computed. Normalization
was performed based on the three minute baseline
resting period, using:

ratioξnorm,i = 10 log
(
ξepochi /ξbaselinei

)
, (1)

with ξnorm,i being the ‘i’-th feature. As such, a total
of 180 ECG features were extracted.

EMG The electromyographic signal provided 53 features,
that can be divided into three groups containing
spectral, statistical evaluation and the sensitivity to
change (first and second derivative) features. As
with the ECG features, normalization was performed
using baseline data, thus totaling 106 EMG features.

RESP From the Respiration signal, 74 features were ob-
tained. These can be grouped into 3 different classes:
rate of change, statistical and spectral analysis.
Seventy-four additional features derived from the
baseline normalization technique yielded a total of
148 features.

EDA Lastly, EDA provided 27 features (statistical, spectral
and rate of change groups) from the band-passed
signal. A total of 54 features were extracted including
the baseline-normalized versions.

E. Feature Selection
Due to the large number of features extracted (i.e., 488), and

particularly in cases of feature fusion techniques, such large
number of features may result in classifier overfitting. As such,
the so-called mRMR [26] feature selection algorithm is used.
mRMR is a mutual information based algorithm that finds
near-optimal features using forward selection with the chosen
features maximizing the combined max-min criteria. Two
criteria are applied as one: the maximum-relevance criterion
(maximization of the average of mutual information between
features and labels) and the minimum-redundancy criterion
(minimization of the average mutual information between two
chosen features). In the present work, 20% of the available data
was set aside for feature ranking. The remaining 80% was used
for classifier training and testing in a cross-validation scheme.
Such partitioning corresponds to having 10 samples per class
for testing and 40 samples per class for training. More details
can be found in Section II-F.

The features were grouped into three separate sets. The
first one included the non-normalized features coming from
the four physiological signals, the second set consisted in
the normalized ones, and the last group was constituted from
a fusion of the first two. Feature ranking was conducted
for the non-normalized feature set alone, for the normalized
feature set alone and the combined feature set on a per-subject
basis. Then, the first ten selected features were further ranked
based on the number of times they were selected across all
participants.

F. Classification
Support Vector Machine (SVM) classifiers have been used

in the present work. Given its widespread use, a description



Fig. 4: Classification scheme designed to detect the level of
fun and decide if the game needs real-time adjustment.

of the support vector machine approach is not included here
and the interest reader is referred to [27] for more details.
SVM classifiers are trained on three different (cascaded)
binary classification problems, as depicted by Fig. 4, namely
i.e. detecting fun changing/non-changing (classifier A), in-
creasing/decreasing (classifier B) and above/below average
(classifier C). The first, termed classifier A, discriminates
between fun ‘changing’ or ‘non-changing’. Based on this
output, the second classifier to be used is decided. If the output
of classifier A is fun ‘changing’, classifier B will successively
discriminate between fun ‘increasing’ or ‘decreasing’. If the
output of classifier A is fun ‘non-changing’, then classifier C
will discern between fun ‘above-average’ or ‘below-average’.

In order to discover the best classification modality, two
feature- and one decision-level fusion strategies are tested with
the remaining 80% of the data. Regarding feature fusion strate-
gies, the first one aims at testing the capacity to predict the
output using the entire dataset within a 10-fold cross-validation
scheme, whereas in the second case a per-subject classification
with a Leave-one-sample-out (LOSO) cross validation scheme
has been tested for comparison. In both cases, default SVM
parameters have been used throughout our analyses (i.e., λ = 1
and γRBF = 0.01); moreover, a Radial Basis Function kernel
was used and implemented with the Scikit-learn library in
Python [28]. Lastly an optimally weighted decision fusion
scheme has been tested [29]. First, the training data of the
normalized feature sets for each physiological signal modality
have been treated separately for both feature ranking and
per-subject classification. Next, based on the performance
achieved, a weight has been determined for the four signal
modalities. According to the decision fusion technique used,
the parameter ti is the achieved performance for a particular
modality, on the training dataset, such that the sum across all
modalities equals unity [29]. The ti parameter is calculated as
follows:

ti =
Ai∑N

i=1 αiAi

(2)

where, Ai is the accuracy obtained training the dataset be-

TABLE I: Percentage of participation of each physiological
signal (ECG, EMG, EDA and RESP) for the classification
schemes (classifiers A, B and C), as well as for the three
methods together.

Classifier A Classifier B Classifier C Total

ECG 39 % 33 % 23 % 32 %

EMG 14 % 21 % 25 % 20 %

RESP 28 % 31 % 36 % 31 %

EDA 19 % 15 % 16 % 17 %

longing to a particular modality, N is the number of modali-
ties and αi are the weights corresponding to each modality
(
∑N

i=1 αi = 1). Optimally weighted decision fusion relies
on optimal weights for each of the four modalities which
are obtained calculating the αi values that result in the best
performance on the training set.

III. RESULTS AND DISCUSSION

A. Feature Ranking

Here, only the feature ranking analysis conducted on the
normalized feature set is reported as it resulted in the highest
accuracy. Table I shows the percentage of features used to
reach the best accuracy from each of the four signals (EDA,
ECG, EMG and RESP) for each of the three classifiers
separately and for the total. As can be seen, ECG and RESP
play a relevant role, representing almost two thirds of the total
amount of top-ranked features.

An in-depth analysis on the features ranked by the mRMR
algorithm has been conducted in order to understand the
most relevant signals and the top-ranked features. Across all
physiological signals, two thirds of the contribution comes
from ECG and RESP, with a peak of 67% in the case of
classifier A. Moderate importance can be attributed to EMG

Fig. 5: Different contribution of the groups of features ex-
tracted (see Sec. II-D) for each signal: ECG (spectral, statisti-
cal, HRV and QRS complex), EMG, EDA and RESP (spectral,
statistical and sensitivity to change).



and EDA, contributing on average one third of the top features.
One potential reason for EMG playing a secondary role could
be due to arm movement artifacts, as well as fatigue, which
has been shown to affect EMG characteristics [30]. The low
temporal resolution of EDA could also be a factor limiting the
contribution of this signal. On the contrary, ECG and RESP
have been previously connected to emotional expressivity, and
their contribution is relevant to understanding inter-individual
differences regarding players’ physiological responses [31].

Fig. 5 shows the type of features more frequently selected
by the feature ranking algorithm, for each of the four signal
modalities. As previously explained, three groups of features
can be differentiated for RESP, EDA and EMG (statistical,
spectral and sensitivity to change), whereas for ECG four
groups are identified (statistical, spectral, QRS analysis and
HRV test). As can be seen, the analysis conducted on the first
and second derivative of the signal is predominant for EMG
and EDA. Whereas for the ECG, the study of QRS complex
prevails over the other three groups. RESP, in turn, had the
same number of features coming from the rate of change and
statistical measures. This situation could be due to its low
temporal resolution and its relationship with the ECG signal
[32].

In order to give a better sense of the most used features,
for each signal and for each classifier, the top-10 components
have been analyzed. Within the ECG class, one third of the
investigated top-features represent information about S and T
waves, whereas another 20% is attributed to information mea-
sured from the segment between the P and Q waves. Moreover,
two out of three classifiers had as their top-10 features the
root-mean-square of the band-passed signal. Regarding EMG,
40% of the first 10 selected features were chosen from the
analysis of the first derivative of the signal. Furthermore, by
analyzing the repetition of the components, the presence of
the power spectrum between 50 and 100 Hz has been ranked
as top-feature for all the three classifiers. For RESP and EDA
the most significant features (respectively 40% and 37%) were
spectral related features. In particular, the power spectrum in
the range of 0-0.7 Hz for RESP and 0-0.4 Hz for EDA.

B. Classification

Table II reports the highest accuracies and F1 scores [33]
achieved with the individual and fused feature sets, for both
all-dataset (10-fold validation) and per-subject (LOSO) classi-
fication schemes, as well as the number of features required to
achieve such results. Values followed by an asterisk indicate
significantly higher than chance according to an independent
one-sample t-test (p < 0.01). As can be seen, the normalized
feature sets achieves the best accuracy and F1 score results for
the three classifiers. The best performance is obtained with
a per-subject LOSO classification and in particular with the
classifier C, reaching 70% discrimination accuracy.

Three main concepts can be inferred from feature-fusion
classification results. First, fun is a dimension that can be
detected by physiological signals, and in particular it is easier
to measure the level of fun than its trend. When we compare

the performance between the three classifiers, the best per-
formance in accuracy is obtained when classifying the level
of fun (fun ‘above-average’ and ‘below-average’ for classifier
C), whereas performance is lower when using discriminating
tendencies (fun ‘increasing/decreasing’ in classifiers A and
B). Furthermore, a per-subject classification surpassed the
one conducted using the full dataset. This effect can be
related to the fun conceived as an individual factor [12]. A
support to this idea also comes from the evaluation of the
performances of the three feature sets. In fact, the normalized
set outperforms or balances the level reached by the fusion
set, thus showing the importance of per-subject normalization
for automated fun assessment. Additionally, when comparing
the number of features in a per-subject classification, two out
of three classifiers (A and C) reached the best results with
the normalized feature sets while using the minimum number
of features. Classifier B with the fused feature set, on the
other hand, required only one third of the components needed
by the normalized set. For what concerns the all-dataset 10-
fold cross validation classification, the best accuracy result
was always reached with fewer features compared to the other
classification schemes, but at the same time resulting in lower
classification performance.

In turn, Table III shows the performances achieved with the
decision level fusion scheme for the three classifiers. While
decision level fusion of classifiers A and C did not lead
to gains over simple feature fusion, decision level fusion of
classifier B did improve the accuracy with a gain over the
feature level fusion of 6 % for the normalized feature set and
4 % for the non-normalized set.

While decision level fusion with classifiers trained on these
four separate modalities (ECG/EMG/EDA/RESP) resulted in
an improvement only for classifier B, decision level fusion
did result in further improvements, particularly when dis-
criminating the increasing/decreasing dimension, thus suggest-
ing the complementarity of the four physiological responses.
Higher contribution rate is attributed to ECG (classifiers B
and C). RESP holds more decision fusion weight in classifier
A, whereas EDA contributed with the third highest weight.
Decision level fusion was previously shown to be a useful
tool for affective state recognition [33].

IV. CONCLUSION AND FUTURE WORK

In this work, a triple-classifier system was tested for auto-
mated fun-level state recognition during video game sessions.
Experimental results showed relevant performances in terms
of accuracy. Feature level fusion has been proved to work
better when detecting the level of fun, whereas decision level
fusion when discriminating trends (70% and 57% respec-
tively). Moreover, the importance of attributing an individual
component to the players’ fun-factor was demonstrated and
essential physiological features are detected. Such findings
suggest the importance of a robust adaptive video game based
on personal characteristics of player’s physiological signals,
and capable of maintaining a high level of fun.



TABLE II: Performance comparison of SVM classifiers for different feature sets and feature-level fusion along with the required
number of features needed to achieve such results. Asterisks indicate whether the accuracy or the F1-score distribution over
subjects is significantly higher than chance according to an independent one-sample t-test (p < 0.01). ‘Per-subj’ corresponds
to per-subject LOSO results, whereas ‘All-dataset’ to 10-fold cross-validation on the entire dataset.

Classifier A

Non-Normalized Features Normalized Features Feature Fusion

Accuracy F1 Score No. Features Accuracy F1 Score No. Features Accuracy F1 Score No. Features
Per-Subj 0.59∗ 0.59∗ 87 0.60∗ 0.60∗ 69 0.59∗ 0.60∗ 70

All-dataset 0.55 0.55 35 0.54 0.54 35 0.55 0.55 32

Classifier B

Non-Normalized Features Normalized Features Feature Fusion

Accuracy F1 Score No. Features Accuracy F1 Score No. Features Accuracy F1 Score No. Features
Per-Subj 0.54∗ 0.53∗ 53 0.54∗ 0.53∗ 91 0.54∗ 0.53∗ 36

All-dataset 0.51 0.50 18 0.50 0.53 22 0.50 0.51 4

Classifier C

Non-Normalized Features Normalized Features Feature Fusion

Accuracy F1 Score No. Features Accuracy F1 Score No. Features Accuracy F1 Score No. Features
Per-Subj 0.69∗ 0.68∗ 54 0.70∗ 0.70∗ 69 0.70∗ 0.69∗ 101

All-dataset 0.55 0.52 30 0.55 0.52 40 0.54 0.52 20

TABLE III: Performance comparison of SVM classifiers for
different decision-level fusion schemes. Asterisks indicate
whether the accuracy or the F1-score distribution over subjects
is significantly higher than chance according to an independent
one-sample t-test (p < 0.01).

Non-Norm. Feats Norm. Feats Feature Fusion

Acc. F1 Score Acc. F1 Score Acc. F1 Score

Class. A 0.57∗ 0.57 ∗ 0.56 ∗ 0.56∗ 0.57 ∗ 0.57∗

Class. B 0.56∗ 0.55 ∗ 0.57∗ 0.57∗ 0.56∗ 0.55∗

Class. C 0.68∗ 0.69∗ 0.70∗ 0.70∗ 0.69∗ 0.69∗

Game design can be significantly improved when conduct-
ing analysis of cognitive and affective neuro-ergonomics. To
improve the performance of the proposed classifier system and
automated game affective tasks, supplementary steps could
be undertaken. First, the binary classification tasks performed
here could be replaced by a regression task where the actual
continuous value of the fun could be predicted. A second
improvement would be to introduce a personalized calibration
before starting the game, in order to train the classifiers based
on personal traits of the subject. Third, classification perfor-
mance could be improved by selecting optimal classification
models by tuning hyperparameters (based on the individual
signature) and explore different fusion strategies. Despite
being innovative, the continuous rating of fun performed after
the videogame session does have its drawbacks: it might
not represent the actual fun that was perceived during the
play and it relies on participants memory of their enjoyment

which could have been forgotten and/or biased. Furthermore,
participants did not have the possibility to rate fun on more
than one dimension. Still, the outcomes of the present work
can be applied to the development of a real-time adaptable
intelligent game with application in console as well as online
gaming. As a matter of fact, the present work is part of the
FUNii (interactive intelligent) project [31] that aims at the
development of an intelligent and interactive system capable
of predicting the player’s level of fun and adjusting the game
to maximize that value.
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