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ABSTRACT

A hybrid signal-and-link-parametric approach to single-ended
quality measurement of packetized speech is proposed. Trans-
mission link parameters are used to determine a base quality
for the test signal. The base quality is adjusted by degradation
factors calculated from perceptual features extracted from the
test signal. The degradation factors are based on Kullback-
Leibler distances between a parametric model trained online
for the extracted features and reference models of normative
speech behavior. The proposed method overcomes the limita-
tions of pure link parametric and pure signal-based methods.

Index Terms— Quality measurement, VoIP, packet loss
concealment, Kullback-Leibler distance.

1. INTRODUCTION

Voice over internet protocol (VoIP) uses packet transmission
of speech over the Internet. Current IP networks are opti-
mized for data communications where variable losses and de-
lay are not critical since retransmission can be performed.
With voice communications, however, retransmission of miss-
ing packets is not a viable option. Packet losses can occur due
to network delay, network congestion or network errors. Lost
packets can degrade the quality of the transmitted speech sig-
nal considerably. Packet loss concealment (PLC) algorithms
are used to replace lost packets and to improve speech quality.

The performance of different PLC algorithms can be as-
sessed via subjective listening tests, such as the mean opinion
score (MOS) test [1]. Subjective testing is expensive, time-
consuming, and not suitable for real-time applications such
as online quality monitoring. Objective quality measurement
methods are preferred in many applications. Objective meth-
ods can be classified as either link-parametric or signal based.
Link-parametric methods use connection parameters to esti-
mate the subjective MOS. For IP networks, parameters can
include codec and PLC type, packet loss pattern (random or
bursty), loss rate, jitter, and delay. Representative algorithms
include VQmon by Telchemy [2], PSI by Psytechnics [3], and
the International Telecommunications Union (ITU) E-model
[4]. Pure link-parametric methods do not account for distor-

tions that are not captured by the link parameters. Sources of
such distortions include acoustic noise and tandem connec-
tions with analog links that do not convey upstream equip-
ment and signal conditions downstream. The E-model is ac-
tually recommended for use as a transmission planning tool
and is not recommended for quality measurement.

Signal based methods use perceptual features extracted
from the speech signal to estimate quality. Signal based ap-
proaches can be classified as double- or single-ended, depend-
ing on whether a clean reference signal is required or not, re-
spectively. ITU-T Recommendations P.862 [5] (PESQ) and
P.563 [6] represent the current state-of-art double- and single-
ended standard algorithms. Standard algorithms can achieve
quality estimates that are highly correlated with subjective
scores. Experiment results described herein, however, sug-
gest that high estimation error is incurred for PLC-processed
speech, particularly so for P.563. Thus, the applicability of
the standard algorithms to VoIP is questionable.

In this paper, a hybrid signal-and-link-parametric approach
to single-ended quality measurement of packet speech is pro-
posed. The method makes use of IP connection parameters as
well as the speech signal for quality estimation. Connection
parameters such as codec and PLC type, packet size, and loss
pattern are used to determine a “base quality” representative
of a specific type of transmission links. Degradation factors
are then computed from perceptual features extracted from
the speech signal and are used to adjust the base quality ac-
cordingly. Degradation factors are based on Kullback-Leibler
distances (KLD) between a Gaussian mixture (GM) model
trained online for the extracted features and GM reference
models of normative speech behavior. Experiments show that
the hybrid approach reduces the root-mean-square estimation
error (RMSE) in comparison with PESQ and P.563.

2. PLC IMPAIRMENT MODELING

It is known that perceived quality of packet loss concealed
speech varies with codec and PLC types, packet size, loss
pattern, and loss rate [7]. Our experiments suggest that PESQ
and P.563 accuracy is also sensitive to such parameters. As an
example, for speech processed by the G.711 PLC algorithm



(with 1%-10% random losses), PESQ attains a correlation
(R) between subjective MOS and objective MOS of 0.835 for
10ms packet sizes, whereasR = 0.876 is attained for 20ms
packets. For the same conditions, P.563 attainsR = 0.749
andR = 0.513, respectively. Similar accuracy sensitivity is
found for different PLC types and loss patterns. This sensi-
tivity motivates our approach of modeling PLC impairments.

2.1. Gaussian Mixture Reference Models

We design reference models of PLC impairments. Models
are designed for perceptually-relevant features (described in
Section 3.1) extracted fromactive frames of loss-concealed
speech. It is known that quality degradation is more pro-
nounced if losses occur during active speech segments. In
fact, if background noise is stationary and comfort noise in-
sertion is in place, losses that occur during inactive periods of
speech have far less impact on perceived quality. Modeling
is accomplished by representing the probability distribution
of extracted features with a Gaussian mixture (GM) density.
A GM density is a weighted sum ofM component densities
f(x|λ) =

∑M
i=1 αibi(x), whereαi ≥ 0, i = 1, ...,M are the

mixture weights, with
∑M

i=1 αi = 1, andbi(x) areK-variate
Gaussian densities with meanµi and covarianceΣi.

As an embodiment of the proposed approach, we design
GM models for three codec-cum-PLC types, three packet sizes
(except for one codec where one packet size is used), and ran-
dom and bursty losses. A complete description of the degra-
dation conditions is given in Section 4.2. A total of 15 GM
models are designed, 14 for PLC impairments (2 codecs× 3
packet sizes× 2 loss patterns + 1 codec× 1 packet size×
2 loss patterns) and one for high-quality, undistorted speech.
The latter models the normative behavior of clean speech.
Previous research [8] has shown that clean speech models are
useful for measuring the quality of speech degraded by con-
ditions unseen to the algorithm, e.g., noise-corrupted speech.
The parameters for the 15 models are stored in a lookup table
and are used in KLD calculation, as described in Section 3.

2.2. Base Quality Calculation

We use subjectively scored training data to calculate a “base
MOS” for each PLC condition considered above. This base
MOS reflects the average quality of a transmission link com-
posed of a specific PLC algorithm, operating on a specific
packet size, under a given loss pattern. As done with the refer-
ence model parameters, the calculated base MOSs are stored
in a lookup table and are used by the MOS mapping module
depicted in Fig. 1. As will be described in the sequel, the base
MOS is adjusted according to degradation factors calculated
from features extracted from the test speech signal.

3. ALGORITHM ARCHITECTURE

The overall architecture of the proposed algorithm is depicted
within the dotted lines in Fig. 1. Connection parameters,
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Fig. 1. Architecture of the proposed algorithm.

extracted from real-time protocol (RTP) or real-time control
protocol (RTCP) headers, are used as input to the base MOS
and the GM reference model lookup tables. Header-extracted
parameters include codec-cum-PLC type and frame size. We
assume that the loss pattern type is appropriately determined
at the packet receiver/decoder; loss pattern type also serves
as input to the lookup tables. Once packets are decoded and
PLC is performed, the speech signal is level-normalized and
filtered. Perceptual features are then extracted from the pre-
processed test signal every 10ms. The voice activity detector
(VAD) labels the feature vector of each frame as either ac-
tive or inactive; only active vectors are kept. The features
extracted from the test signal are represented by a GM den-
sity whose parameters are estimated using the expectation-
maximization (EM) algorithm. Two KLDs are then calculated
between the online-estimated GM model and two reference
models. One KLD measures the similarity between the on-
line model and the clean speech reference model; the other,
between the online model and a link-specific PLC reference
model. The calculated distances, together with a base MOS
and an estimated signal-to-noise ratio (̂SNR) are mapped to
a final estimated MOS (̂MOS). A more detailed description
of each block is provided in the remainder of this section.

3.1. Pre-processing, VAD and Feature Extraction

The pre-processing module performs level normalization and
intermediate reference system (IRS) filtering. The level of the
speech signal is normalized to -26dBov and a modified IRS
filter is applied to emulate the handsets used in listening tests.
Voice activity detection (VAD) is employed to label speech
frames as active or inactive. Here, the VAD from ITU-T
G.729B [9] is used. As will be shown in Section 4.2, the SNR
estimated by the VAD algorithm (̂SNR) is useful for qual-
ity measurement of speech corrupted by additive noise prior



to packetization. As for perceptually relevant features, we in-
vestigate the effectiveness of usingpth order perceptual linear
prediction (PLP) [10] cepstral coefficients,x = {xi}p

i=0. The
zeroth cepstral coefficient is used as a log-energy term. We
also experiment with delta and double-delta coefficients [11]
as measures of signal spectral dynamics.

It is important to highlight that in some specific VoIP codec
implementations, VAD decisions and spectral parameters are
transmitted by the encoder and are readily available at the de-
coder. Such information can be used by the proposed algo-
rithm to assist in VAD and feature extraction tasks. The archi-
tecture in Fig. 1 is for conceptual clarity and does not account
for integrated processing that advantageously reduces overall
computation complexity of the proposed scheme.

3.2. Online GMM Parameter Estimation

Online, the expectation-maximization (EM) algorithm is used
to train a GM density on features extracted from the test sig-
nal. It is known that for diagonal covariance GMMs, the num-
ber of parameters that needs to be estimated during training is
given byM(2K +1), whereK = p+1. Since our databases
comprise speech files that have an average length of 7 seconds
and an activity ratio of 70-90%, we restrict our experiments
to 5th order PLP coefficients (p = 5). Choosingp = 5 re-
sults, on average, in a training ratio (ratio between number of
frames in the test signal and number of parameters estimated
during training) that is greater than 10.

An alternate approach is taken when we investigate aug-
menting PLP coefficients with delta and double-delta coeffi-
cients. In this case, accurate GM modeling on a “per-sample”
basis is not warranted as the training ratio is very low. A pos-
sible solution, and the one used here, is to perform GM mod-
eling on a “per-condition” basis, where all files that belong to
a specific degradation condition are used for parameter esti-
mation. In analogy to quality monitoring of an ongoing call,
per-condition accumulation can be viewed as the equivalent
of collecting speech packets until a certain training ratio is
obtained. An entailing condition is that loss statistics remain
unchanged during collection. Our approach allows for encap-
sulating a much wider range of link conditions in the tables in
Fig. 1 than our present concept-demonstration experiment.

3.3. KLD Calculation and MOS Mapping

The proposed algorithm makes use of the Kullback-Leibler
distance to compute a degradation factor that is used to ad-
just the base MOS. The KLD [12] measures the dissimilarity
between two probability density functions. Here, two KLDs
are calculated. One measures how well the online-estimated
model approximates the reference PLC model; the other, how
well it approximates the clean speech model. We use a sim-
plified version of the KLD described in [13]. In the follow-
ing equations,f represents the reference model,f̃ the online
estimated model, andD(f, f̃) describes how well̃f approxi-

matesf . The simplified KLD is given by

D(f, f̃) =
M∑

i=1

M̃∑

j=1

αiα̃jD(bi(x), b̃j(x)) (1)

where

D(bi(x), b̃i(x)) =
1
2

(
log

(det Σ̃i

detΣi

)
+ trace(Σ̃−1

i Σi)

+ (µ̃i − µi)
T Σ̃−1

i (µ̃i − µi)−K
) (2)

is the KLD between twoK-variate Gaussian densities. The
KLD is an asymmetric measure, i.e.,D(f, f̃) 6= D(f̃ , f). We
use the symmetrized measureDsym(f, f̃) = [D(f, f̃)−1 +
D(f̃ , f)−1]−1 [14] which we found to improve performance.

Lastly, the two KLDs, together with the base MOS and
ŜNR, are mapped to an estimated MOS. As will be shown
in Section 4.2,̂SNR is a useful measure for cases where the
speech signal is corrupted by additive noise prior to trans-
mission through an IP network. We experiment with linear,
multivariate polynomial and support vector regression (SVR)
as candidate mapping functions. Simulation results showed
that a radial basis SVR, with parameters optimized via linear
search, provides least estimation error. The results below are
all based on using SVR.

4. EXPERIMENTAL SETUP

4.1. Database Description

Two subjectively scored multilingual databases (English and
French) are used in our experiments; subjective testing is per-
formed conforming to [1]. The databases comprise speech
processed by G.711, G.729 and Adaptive Multi-Rate (AMR)
codecs. The PLC used for G.711 is described in [15]. G.729
and AMR have their own built-in PLCs. Packet sizes are 10,
20, and 30ms, except for AMR where only 20ms packets are
used. Random and bursty losses are simulated at 1, 2, 4, 7,
and 10%. Losses are applied to active packets only; a packet
is classified as active if it comprises active speech frames only.
Speech files corrupted by three noise types (hoth, babble, car)
at two SNR levels (10 and 20dB) prior to packetization are
also included. In this situation, random and bursty losses are
simulated at 2% and 4%. A simple PLC scheme consisting
of silence insertion is also used. The French database is used
to train the PLC models and the MOS mapping function; the
English database is regarded as unseen and is used for testing.
Each database comprises 824 speech files, of which 216 are
noise-corrupted. A total of 206 degradations conditions are
included in each database.

4.2. Simulation Results

Initial experiments were performed using only PLP cepstral
coefficients as features. On the test database, a “per-condition”



Table 1. Performance comparison of PESQ, P.563 and the
proposed algorithm

Figure PLP- Deltas-

of Merit
PESQ P563

SNR
Deltas

SNR

R 0.919 0.673 0.918 0.907 0.922
RMSE 0.562 0.797 0.366 0.361 0.331

%R – – 36.4 34.8 37.0
%RMSE – – 54.1 54.7 58.5

R = 0.831 andRMSE = 0.454 between subjective MOS
and objective MOS is attained. If noise-corrupted PLC files
are excluded, we obtainR = 0.879 andRMSE = 0.391. To
improve estimation performance for the noise-corrupted files,
we use the SNR estimated by the VAD algorithm as an added
feature for the MOS mapping function. Table 1 compares
the performance of PESQ, P.563, and the proposed algorithm.
The labels “PLP” and “Deltas” indicate performance figures
for models using PLP cepstra and PLP combined with delta
and double-delta parameters, respectively. The suffix “-SNR”
indicates that̂SNR is also used. We donot perform3rd or-
der polynomial mapping in an attempt to investigate the true
RMSE produced by the algorithms. Rows labeled “%R”
and “%RMSE” list percentage increase inR and percentage
reduction inRMSE, relative to P.563, respectively.

As can be seen, improved performance is attained if̂SNR
is used as a complementary feature. The performance at-
tained with Deltas is comparable to that of PLP-SNR; thus,
the Deltas configuration is preferable when accurate SNR es-
timates are not available. In all cases, the proposed algorithm
has correlation results comparable to that of PESQ, while of-
fering the benefit of not requiring access to the clean speech
signal. Substantial improvement in bothR and RMSE is
obtained relative to P.563. Most important, a reduction in
RMSE of up to 58% can be attained with Deltas-SNR. Rela-
tive to PESQ, the obtained reduction is of 41%. These results
suggest that the proposed algorithm is a better candidate for
online monitoring of speech quality. Furthermore, it is im-
portant to emphasize that a 35% reduction in algorithm pro-
cessing time is attained relative to P.563. The comparison
is performed between a Matlab implementation of the pro-
posed algorithm and the ANSI-C reference implementation
of P.563; a complete C implementation of the proposed algo-
rithm would further increase the speedup.

5. CONCLUSIONS

A hybrid signal-and-link-parametric quality measurement al-
gorithm for packetized speech is proposed. The method im-
proves on pure link-parametric approaches by measuring dis-
tortions that are not captured by connection parameters. Lower
RMSE is also attained relative to two standard signal based

schemes; lowRMSE is a valuable attribute for online speech
quality monitoring applications.
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