
Classification of Speech Degradations at Network 
Endpoints Using Psychoacoustic Features 

 

Hua Yuan, Tiago H. Falk and Wai-Yip Chan 
Department of Electrical and Computer Engineering  

Queen’s University, Kingston, Ontario, Canada  
 E-mail: {yuanh, falkt, chan}@ee.queensu.ca  

 
 

Abstract—We propose a method of classifying speech 
degradations at network endpoints. Perceptual features are 
extracted from degraded speech signals and used to form 
statistical reference models of behaviors of different degradation 
types. Consistency values between degraded speech signals and 
the reference models are calculated and used to train a 
degradation classifier. The consistency values of a received 
degraded speech signal then serve as predictors in the trained 
classifier for a degradation type decision. The proposed method is 
tested on four commonly encountered degradation types with 
unseen data and the experimental results show that the method 
achieves high classification accuracy. The proposed method can 
be used to enhance applications such as speech enhancement, 
recognition, and quality estimation. 
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I.  INTRODUCTION 
The number and types of networks that can mediate a 

voice telephony connection continue to grow at a fast 
pace. Over years we have seen a developing network 
shift from analog to digital, wired to wireless, and a 
continuous migration of some voice calls from 
conventional networks to Voice over Internet Protocol 
(VoIP). While this development brings new services and 
lowers costs, it also exacerbates the uncertainty of end-to-
end voice quality. Voice transmitted over multi-stage, 
hybrid networks nowadays is impaired by more kinds of 
degradations than ever. In the IP based telephony 
network, packets can be lost due to network delay, 
congestion or errors, thus causing degradation in voice 
quality. Packet loss concealment (PLC) algorithms are 
used to recover from lost packets and to improve the 
impaired quality. Voice transmitted over heterogeneous 
networks may be processed by a sequence of codecs that 
constitutes a tandeming condition. While a single codec 
can degrade speech quality noticeably by coding at low 
bit-rates (LBR), as found in some wireless codecs, 
processing by a tandem of codecs, whether LBR codecs 
are used or not, may also result in noticeable 
degradations. Other sources of degradations may include 

background acoustic noise, circuit noise, bit errors, and 
echoes.  

For dynamic quality assurance, real-time voice 
degradation monitoring and call control can be deployed. 
Accurate identification of the degradations impairing a 
received speech signal enables initiation of appropriate 
corrective measures. Impaired speech signals can be 
more efficiently enhanced by identifying the sources of 
degradations than treating them identically. Besides, for 
dynamic quality assurance, a real-time speech quality 
estimator is desired. Most online speech quality 
estimation algorithms, including the current state-of-the-
art standard ITU-T P.563 [1], measure the received 
speech quality without knowing the sources of 
degradations. Degradations from different sources have 
distinctive behaviors and certainly contribute differently 
to the decrease of speech quality. Therefore, the 
performance of current speech quality estimation 
algorithms can be improved if the degradation type 
information is available.        

In this paper, we describe an algorithm to classify 
speech degradations at network endpoints. The algorithm 
uses perceptual features extracted from degraded speech 
signals to form reference models of behaviors of different 
degradation types. Modeling is accomplished by 
representing the probability distribution of the perceptual 
features with a Gaussian mixture (GM) density. 
Classification is achieved by means of a consistency 
measure, calculated between the degraded test speech 
signal and the reference models. Here, two classification 
schemes are investigated. Four commonly encountered 
degradation types are tested and both schemes are shown 
to achieve high classification accuracy on an unseen test 
dataset. 

II. ALGORITHM DESCRIPTION 
Fig. 1 shows the architecture of the proposed 

algorithm. During transmission over the communication 
network, the speech signal experiences various kinds of 
degradations. The received degraded speech signal at  



Figure 1.  Architecture of the proposed algorithm. 

network endpoints is first pre-processed by the algorithm, 
where the level of the speech signal is normalized. 
Perceptual features are then extracted from degraded 
speech signal every 10 milliseconds. The voice activity 
detector (VAD) labels the feature vector of each frame as 
either active or inactive. 

Offline, degraded speech signals from training 
datasets are used to produce reference models for each 
degradation type and to train a classifier. Perceptual 
features are extracted. The probability distribution of the 
features is modeled with a Gaussian mixture model 
(GMM) and the model parameters are estimated by an 
expectation-maximization (EM) algorithm. Consistency 
measures with degradation reference models are then 
calculated for each degraded speech signal and the 
consistency values are used to train a degradation 
classifier.  

During online operation, the feature vectors of the 
received degraded speech signal are fed into the GMM 
reference models for consistency calculation. The 
classifier is then applied to produce a degradation 
decision. A detailed description of each processing block 
of the algorithm is provided in the remainder of this 
section. 

A. Pre-processing, VAD and Feature Extraction 
The pre-processing module performs level 

normalization so that the speech signal level is 
normalized to -26dBov. Voice activity detection (VAD) 
is employed to label speech frames as either active or 
inactive. Here, the VAD from ITU-T G.729B [2] is used. 

As for perceptually relevant features, we investigate 
the effectiveness of using thp order perceptual linear 

prediction (PLP) [3] cepstral coefficients, { }p
iix 0==x . 

PLP cepstra exploit three essential psychoacoustic 
precepts (critical band spectral resolution, equal-loudness 

curve, and intensity loudness power law) and have been 
proven to be more consistent with human auditory 
perception than speech-production-based linear 
predictive analysis. Because of these attractive properties, 
PLP features are used in applications of speech quality 
estimation [4] and speech recognition [5], and also used 
here as candidate features for degradation classification. 
We experiment with several PLP orders and 5=p is 
chosen as it strikes a balance between performance and 
complexity. PLP features are extracted from the speech 
signal every 10 milliseconds and stored in a feature 
vector per frame. 

B. GM Reference Models and Parameter Estimation 
The reference model of each degradation type is 

created using PLP features extracted from active frames 
of degraded speech signals. As an initial approach of the 
problem, we focus on modeling the active speech 
segments because the degradations considered here are 
perceptually more prominent in the active segments. 
Modeling is accomplished by using GMMs to represent 
the probability distribution of PLP features. A GM 
density is a weighted sum of M component densities  
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variate Gaussian densities with mean vector iµ  and 
covariance matrix iΣ . λ  represents the complete GMM 
parameter set { }iii Σµ ,,α . As an embodiment of the 
proposed method, we design reference models for the 
following degradation types: acoustic noise, codec-
tandeming, coding at low bit rates, and packet loss 
concealment. We also design a clean speech reference 
model to distinguish high-quality speech signals from 
degraded speech signals. Therefore, altogether five GMM 
reference models { }5,4,3,2,1),|( =∈ SλS xclassp , are 
created. Subscript “class” represents the index of the four 
degradation types and the clean speech type. We 
experiment with GMMs with 16 Gaussian components 
( )16=M  and diagonal covariance matrices. 

C. Consistency Measure and Degradation Classification 
In principle, by evaluating the density of a reference 

model )|( λxclassp  using the feature vector x  from the 
received signal, a measure of consistency between the 
feature vector and the reference model is obtained. Thus, 
for a given speech signal, the consistency between the 
observation and the reference models is defined as the 
normalized log-likelihood 
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where N1 x,x …, are the feature vectors of the speech 
signal, and N represents the total number of feature 
vectors. Normalization is required as N  varies for 
different test signals. For each test signal, a total of five 
consistency measures are computed: one for each 
reference model, as distinguished by the subscript 
“class”. Since Larger classC indicates greater consistency, 
a simple degradation decision can be made by picking the 
degradation type with the largest consistency value:  

( ).,maxargDecision N1 x,x …classclass CS∈=        (2) 

A more sophisticated decision algorithm is obtained 
by applying a classifier. Offline, the consistency 
measures of degraded speech signals from training 
datasets, along with their respective degradation class 
information, are used to train a classifier. Online, the 
consistency measures of the test speech signal serve as 
input to the trained classifier for a degradation decision. 
We experiment with two candidate classifiers that are 
based on Support Vector Machine (SVM) [6] and 
Classification and Regression Tree (CART) [7], 
respectively. Simulation results indicate that the SVM 
based classifier achieves a lower classification error rate.  

III. EXPERIMENTAL RESULTS 

A. Database Description 
The degraded and clean speech signals used in our 

experiments are taken from two publicly available 
databases (NOIZEUS [8] and ITU-T P-Series 
Supplementary 23 [9]) and two proprietary databases 
(LBR Codec and VoIP). The NOIZEUS database is 
comprised of speech signals corrupted by eight different 
types of real-world noise at four different SNR levels (0, 
5, 10, and 15 dB), and hence is used to represent 
degradation due to acoustic noise. Speech files selected 
from the LBR Codec database are coded by seven 
vocoder algorithms (FS-1016, MBE-2.4, MBE-4.8, LPC-
10E, STC-2.4A, STC-2.4B and STC-4.8) at two low bit-
rates (2.4 and 4.8 Kbps), representing degradation 
produced by low bit-rate codecs. The VoIP database 
contains speech files processed by G.711, G.729 and 
Adaptive Multi-Rate (AMR) codecs, with packet loss 
concealment (PLC). Random and bursty losses are 
simulated at 4%, 7%, and 10%.  The ITU-T Supp. P. 23 
Experiment 1 database has a variety of codec tandeming 
conditions involving ITU-T speech coding standards 
(G.729, G.726, and G.728) and codecs (Full-Rate GSM, 
IS-54 and Half-Rate JDC) deployed in digital mobile  

TABLE I.  NUMBER OF  TEST FILES FOR EACH DEGRADATION TYPE 

Degradation Type 
 

Acoustic 
noise LBR PLC Tandem Clean 

speech 

Num. of  
Files 360 285 168 144 224 

 
radio systems. Finally, clean speech files are selected 
from the ITU-T Supp. P. 23 Experiment 1 and 3 
databases, where speeches are spoken in different 
languages by different speakers. 

Speech files from the above mentioned databases are 
divided into two groups. One group is used to train the 
GMM reference models and the degradation classifier, 
while the other is regarded as unseen and used for testing. 
The total number of test files for each degradation type is 
given in Table I. In an attempt to test the robustness of 
the proposed algorithm to unseen degradation conditions, 
the signals in the test set are corrupted by degradation 
conditions unseen to training. Languages, other than the 
ones used in training, are also available in the test set in 
order to investigate the effectiveness of the proposed 
algorithm to unseen languages.   

B. Simulation Results 
As mentioned previously, we examine five 

degradation types for classification as denoted by 
“Acoustic noise”, “LBR (low bit-rate codecs)”, “PLC 
(packet loss concealment)”, “Tandem (codec 
tandeming)”, “Clean speech” in Table I. We experiment 
with two different classification methods: the one 
described by (2) and the SVM approach described in 
Section II. Table II and III present classification results as 
confusion matrices. Each element in the matrices 
indicates the number of test signals that are classified to 
the predicted category. Therefore, elements on the 
diagonal represent the total number of correctly classified, 

TABLE II.  CONFUSION MATRIX OF CLASSIFICATION DECISIONS BASED 
ON SIMPLE CONSISTENCY MEASURE 

Predicted Category Actual 
Category Acoustic 

noise LBR PLC Tandem Clean 
speech 

Accuracy 
Rate (%)

Acoustic 
noise 360 0 0 0 0 100 

LBR 0 261 14 0 10 91.6 

PLC 0 0 168 0 0 100 

Tandem 0 0 7 137 0 95.1 

Clean 
speech 0 18 0 9 197 88.0 

Average - - - - - 95.1 



TABLE III.  CONFUSION MATRIX OF  CLASSIFICATION DECISIONS BASED 
ON TRAINED SVM CLASSIFIER 

Predicted Category Actual 
Category Acoustic 

noise LBR PLC Tandem Clean 
speech 

Accuracy 
Rate (%)

Acoustic 
noise 360 0 0 0 0 100 

LBR 0 284 0 0 1 99.6 

PLC 0 0 168 0 0 100 

Tandem 0 0 8 134 2 93.1 

Clean 
speech 0 2 0 0 222 99.1 

Average - - - - - 98.9 

 
while the others represent the number of misclassified 
files. A classification accuracy rate is reported on the last 
right column of the tables for each degradation type. The 
tables also show an average accuracy rate, which is the 
weighted sum of accuracy rates of all degradation types, 
at the bottom, where the weight is given by the file 
number percentage of each degradation type.   

As can be seen, the proposed algorithm achieves high 
classification accuracy, for both the consistency measure 
based and the SVM classifier based schemes. When 
compared with one the other, the SVM based scheme 
improves performance for two degradation types: LBR 
and Clean speech, thereby attaining a higher average 
accuracy rate. 

The consistency measure based scheme, on the other 
hand, has an advantage of being simple. No classifier 
needs to be trained and the decision can be made directly 
upon the degradation type with the largest consistency 
value. The hindrance is that it attains a relatively low 
accuracy rate of 88% for clean speech detection. In fact, 
by applying a state-of-the-art speech quality estimation 
algorithm such as ITU-T P.563 [1] to the online received 
speech signal before performing degradation 
classification, the ‘cleanness’ of  the speech signal can be 
pre-determined, as depicted in Fig. 2. Clean speech 
signals are detected if an objective quality score above a 
certain threshold is attained. If a 5-point mean opinion 
score (MOS) scale [4] is used, our experiments suggest 
that the threshold can be set to 3.8. In such scenario, 
overall classification accuracy of the simplified scheme 
increases to 97%. 

It is observed that the proposed algorithm based on 
the trained SVM classifier attains high classification  

Figure 2.  Architecture of simplified classifier working with P.563 . 

accuracy in nearly every degradation category except 
codec tandeming. Considering the test datasets comprise 
speech signals with many conditions unseen to the 
training process, the proposed algorithm is very robust 
and effective. 

IV. CONCLUSIONS 
A method of classifying speech degradations at 

network endpoints is proposed based on statistical 
modeling of perceptual features of degradation types and 
a trained classifier using consistency measures between 
the degraded speech signals and the reference models. 
Experimental results show that the proposed method 
achieves promising degradation classification 
performance. 
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