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Abstract
Auditory spectro-temporal representations of reverberant
speech are investigated for blind estimation of reverber-
ation time (RT ) and for single-ended measurement of
speech quality. The auditory representations are obtained
from an eight-filter filterbank which is used to extract
the modulation spectra from temporal envelopes of the
speech signal. Gaussian mixture models (GMM), one
for each modulation channel and trained on clean speech
signals, serve as reference models of normative speech
behavior. Consistency measures, computed between re-
verberant test signals and each GMM, are mapped to an
estimatedRT and to an estimated quality score. Experi-
ments show that the proposed measures achieve superior
performance relative to current “state-of-art” algorithms.
Index Terms: Reverberation time, quality measurement,
GMM, modulation spectrum, consistency.

1. Introduction

When speech is produced in an enclosed environment,
the acoustic signal follows multiple paths from source to
receiver, resulting in reverberations. Reverberant signals
sound distant and suffer from perceptual artifacts such as
coloration and echoes. With the advances in hands-free
telephony, reverberation has become a burden, in partic-
ular, to applications such as automatic speech recogni-
tion (ASR) and hearing aids. Quantifying reverberation
is not easy and, commonly, the so-called reverberation
time (RT ) is used.RT , by definition, is the interval re-
quired for the sound energy to decay by 60dB after the
sound source is turned off. LargerRT results in speech
signals with decreased quality and intelligibility. Tradi-
tionally, room impulse responses or room geometry and
absorptive properties are used to measureRT .

More recently, signal-basedRT estimators that do
not take into account room characteristics have been in-
vestigated; such “blind” estimation methods are impor-
tant for real-time applications. In [1], a partially blind
method is proposed where room characteristics are learned
via a neural network approach. In [2], the diffuse tail of
the reverberation is modeled as an exponentially damped
Gaussian white noise. The time constant of the decay,

obtained via a maximum-likelihood procedure, is used to
blindly estimateRT . In the dereverberation literature,
linear prediction (LP) residuals are widely used to quan-
tify reverberation; several algorithms have been proposed
based on this paradigm (e.g., [3, 4]). The idea is that
for clean voiced speech segments, the LP residuals have
strong peaks corresponding to glottal pulses; these peaks
are spread in time for reverberant speech. The kurtosis of
the LP residual is shown to be a good measure ofRT [3].

In this paper, auditory spectro-temporal (ST) repre-
sentations of speech are investigated for blind estimation
of RT , as well as for single-ended quality measurement
of reverberant speech. It is known that reverberation al-
ters the modulation spectra of the speech signal (see e.g.,
[5]). Modulation frequencies are defined as the spectral
content of the temporal envelope of the speech signal.
Cues obtained from ST representations have been used by
the ASR community to enhance features extracted from
noisy speech (e.g., [6]). To the best of our knowledge, ST
representations have not yet been used to estimateRT .
Although ST representations have been used to estimate
the quality of speech codecs and transmission systems
[7], we show that the measure proposed here estimates
the quality of reverberant speech more accurately.

Gaussian mixture models (GMM), trained on clean
speech, are used as models of normative speech behavior.
Different GMMs are obtained for eight different modu-
lation frequency bands. Here, two experiments are per-
formed. The first investigates the effects of reverberation
on the modulation spectra. In the second, a more practical
scenario is investigated where reverberationandacoustic
background noise are present. In both cases, consistency
measures, computed from degraded speech signals rela-
tive to each GMM, are mapped to an estimatedRT and to
an estimated quality score. We show that with simple lin-
ear mappings, improved estimation performance can be
attained relative to current state-of-art schemes.

2. ST Representations of Speech

In order to obtain an auditory spectro-temporal represen-
tation akin to the one described in [8], the following pro-
cessing steps were performed. First, the speech signal
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Figure 1: ST representation of a reverberant signal with
RT = 0.3s.

level is normalized to -26dBov. The normalized speech
signal is then filtered by a bank of critical-band filters.
A critical-band gammatone filterbank, with 23 filters, is
used to emulate the processing performed by the cochlea.
The filter center frequencies range from 125Hz to 3.5kHz
(speech signals used in our experiments have a sampling
rate of 8kHz). The bandwidth of the filters are charac-
terized by the equivalent rectangular bandwidth (ERB);
the filter centered at 125Hz has a bandwidth of 38Hz,
whereas the filter centered at 3.5kHz has a bandwidth
of 410Hz. The Hilbert envelope is then obtained from
each of the 23 signals output from the cochlear filter-
bank. An eight-filter modulation filterbank is applied to
each temporal envelope. The center frequencies (fc) and
bandwidths (BW ) of the modulation filters are described
in Table 1. The output of the auditory processing mod-
ule (for framej) is termedXj = {x1,j , . . . x8,j} where
eachxi,j , i = 1, . . . , 8, represents a23-dimensional vec-
tor with one energy value for each cochlea frequency band.

Figures 1 and 2 depict the ST representation of a fe-
male speaker for anRT of 0.3s and 1s, respectively. The
plots show the effects of increasingRT on different mod-
ulation frequency bands. Note that due to the increasing
bandwidth of the filters, energy normalization, in princi-
ple, should be performed. For this study, however, nor-
malization is not crucial since the computed measures are
obtainedrelativeto models of normative clean speech be-
havior. It is also important to emphasize that the energy
envelopes obtained across cochlear frequencies, for the
first few modulation channels (i.e., in accordance with
normative speech behavior), resemble spectral envelopes
obtained from LP analysis of the speech signal. For brevity,
we omit plots that better illustrate this behavior.

3. GMMs and Consistency Calculation

Eight Gaussian mixture models are used to modelxi,
i = 1, . . . , 8, for active speech frames. A Gaussian mix-
ture density is a weighted sum ofM component den-
sities p(x|λ) =

∑M
k=1 αkbk(x), whereαk ≥ 0, k =
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Figure 2: ST representation of a reverberant signal with
RT = 1s.

1, ..., M are the mixture weights, with
∑M

k=1 αk = 1,
and bk(x) are K-variate Gaussian densities with mean
vectorµk and covariance matrixΣk. The parameter list,
λ={λ1, . . . ,λM}, defines a particular GMM, whereλk

= {µk, Σk, αk}. On our experiments, 32 diagonal co-
variance matrix Gaussian components are used.

The consistency between the reverberant test speech
signal and each of the eight reference GMMs is computed
as the normalized log-likelihood

cm({xm,j}N
j=1) =

1
N

N∑

j=1

log(pm(xm,j |λ)),m = 1, ..., 8

where{xm,j}N
j=1 represents the feature vectors of theN

active speech frames for modulation frequency bandm,
and pm are the reference GMMs. Largercm indicates
greater consistency with normative clean speech.

4. Experiment Setup

4.1. Generating Reverberant Speech

Reverberant speech is usually modeled as a convolution
of the clean speech signal with the room impulse response,
where the room impulse response can be measured or
simulated (with e.g., the image model). Here, the SIREAC
(SImulation of REal ACoustics) tool [9] is used to artifi-
cially generate reverberant speech with differentRT. The
room impulse response represents a typical office envi-
ronment. The reader is referred to [9] for a more compre-
hensive description of the simulation tool.

We use 256 clean speech files from four male and
four female speakers to train the reference GMMs. Half
the sentences are in English and the other half in French.
The SIREAC tool is used to artificially generate reverber-
ant speech. In the experiment described in Section 4.2,
speech is degraded with twelve differentRT values: 0.1s–
1s (0.1s increments), 1.5s, and 2s. In the experiment de-
scribed in Section 4.3, speech is degraded with ten dif-
ferentRT values (0.1s–1s, 0.1s increments) and babble
noise is also added at four different signal-to-noise ratios



(5dB–20dB, 5dB increments). Correlation (R) and root-
mean-square error (ε) between reference and estimated
measures are used as performance figures.

To test the capability of the proposed measure in per-
forming single-ended measurement of reverberant speech
quality, we compare the estimated quality scores with
those produced by the state-of-art ITU-T P.862 (PESQ)
quality measurement algorithm [10]. Ideally, subjective
scores obtained from formal listening tests, such as the
mean opinion score (MOS) test [11], should be used in
this comparison. However, performing these formal tests
is costly and time-consuming. Nonetheless, informal sub-
jective tests carried out at our labs suggest that PESQ pro-
vides accurate quality estimates for reverberant speech,
ranking similarly with the scores obtained subjectively.
Furthermore, PESQ scores are shown to correlate well
with the trueRT (R = −0.95 on our data). Note that
with PESQ, the original clean speech signal is required,
thus limiting its usability in online applications.

4.2. Experiment 1: Reverberation Only

In this experiment, we investigate the effects of rever-
beration on different modulation frequency bands. The
computed consistency measures are also tested as effec-
tive features for blindRT estimation and for single-ended
quality measurement of reverberant speech. Table 1 de-
scribes the correlation obtained between the computed
consistency measures and the trueRT for each of the
eight modulation channels. As can be seen, the lowest
correlation values are obtained from modulation frequen-
cies around 14Hz and 128Hz. Results also suggest that
the important frequency bands for quantifyingRT lie in
the 4-8Hz and in the 30-80Hz range. This information
can be used to improve performance of algorithms oper-
ating in reverberant conditions.

Moreover, positive correlations are attained for the
first three modulation channels, which may at first seem
counter-intuitive (largerRT resulting in higher consis-
tency with clean speech). However, for smallerRT , re-
flections create irregular-period pitch pulses, thus distort-
ing the excitation spectrum and hence the LP envelope.
The number of such reflections increases with increas-
ing RT , causing the excitation to look more Gaussian-
noise like, thus having less impact on the LP envelope.
As an example, the spectral distortion (SD) [12], aver-
aged over 400ms of active speech, is computed between
clean and reverberant speech; anSD = 3.51dB is at-
tained forRT = 0.1s andSD = 2.81dB for RT = 1s.
The plots depicted in Fig. 3 represent an extreme case
where theSD for the signal with largerRT is 2dB lower
than that of the signal with smallerRT . Recall from Sec-
tion 2 that the energy envelopes used to train the GMMs
resemble LP spectral envelopes for lower modulation fre-
quency bands, thus positive correlations are indeed ex-
pected. Note that this behavior is consistent with the find-

Table 1: Correlation between consistency and trueRT
for each modulation frequency band. Filter center fre-
quency (fc) and bandwidth (BW ), in Hz, are also shown.

Modulation Frequency Band Index

1 2 3 4 5 6 7 8

fc 4 6.5 10.8 17.7 28.9 47.6 78 128
BW 2 3.5 5.9 9.8 15.9 26.4 43.2 70.8
R 0.86 0.81 0.41 -0.30 -0.67 -0.71 -0.63 -0.28
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Figure 3: Comparison of16th order LP spectral en-
velopes for clean (solid) and reverberant speech with
RT = 0.1s (dashed,SD = 4.5dB) andRT = 1s (dot-
dashed,SD = 2.5dB).

ings reported in [4].
In order to estimateRT and speech quality, mapping

functions are devised between the eight consistencies and
the measure to be estimated. The consistencies obtained
from the English reverberant speech signals (total of 1536
signals) are used to train the mappings and the French re-
verberant signals are regarded as “unseen” and are used
for testing. With a simple linear regression mapping func-
tion, anR = 0.92 and anε = 0.27 is attained between
the true and estimatedRT . Moreover, anR = 0.93 and
anε = 0.19 is attained between the PESQ-MOS and the
estimated MOS. Lowerε can be attained if more com-
plex mapping functions are used; e.g., multivariate adap-
tive regression spline functions result in reductions inε of
18% and 20% forRT and MOS estimation, respectively.

To compare performance with other blind measures,
we use the kurtosis of the LP residual as a measure ofRT ,
and the state-of-art ITU-T P.563 single-ended algorithm
[13] as a measure of MOS. For fair comparisons, linear
mappings trained on the English data are also devised;
performance figures reported below are for the French
dataset. In [3], the kurtosis of the LP residual is shown
to correlate well withRT . We use the LP residuals of
voiced frames computed from a12th order LP model. We
note that good performance (R = 0.83) can be attained



only if signals with lowRT are considered (RT ≤ 0.5s).
In our experiments, voicing decisions became unreliable
with higherRTs. When considering allRT ranging from
0.1–2s, the kurtosis is computed from all active frames
(voicedand unvoiced, as in [3]) and anR = 0.52 and
ε = 0.68 is attained. For P.563, anR = 0.73 and an
ε = 0.52 is attained relative to PESQ-MOS.

4.3. Experiment 2: Reverberationand Noise

In this second experiment, we consider a more practi-
cal application where background noiseand reverbera-
tion are present. As an estimator ofRT , the proposed
measure achievesR = 0.87 and ε = 0.27. Since LP
residuals are sensitive to background noise we observe
that a substantial decrease in performance is attained with
the LP residual kurtosis measure (R < 0.2). Note that,
in this experiment, the consistencies can also be used to
blindly estimate SNR. With a linear mapping,R = 0.94
and ε = 1.59 is achieved between true SNR and esti-
mated SNR (in dB). This compares favorably with e.g.,
the SNR estimated by P.563, where anR = 0.91 and
ε = 2.78 is attained.

As an estimator of PESQ-MOS, the proposed mea-
sure attainsR = 0.82 andε = 0.16. Due to the addi-
tional noise source, the range of possible PESQ scores
decreases, thus a smallerε is attained relative to Exper-
iment 1. For comparisons, we use the ANIQUE qual-
ity measurement paradigm described in [7]; on our data,
it resulted in better performance relative to P.563. With
ANIQUE, quality scores are obtained based on the power
ratio between low and high frequency modulation chan-
nels. The results reported here are based on an “in-house”
implementation of the ANIQUE algorithm. The power
ratio is computed between the four lower and four higher
frequency modulation channels. Ratio and per-frame ag-
gregations are performed as described in [7]. A linear
mapping is devised between ANIQUE-MOS and PESQ-
MOS and anR = 0.73 andε = 0.22 is attained. Clearly,
the proposed measures outperform state-of-art algorithms
in bothRT and speech quality estimation tasks for both
experiments described above.

5. Conclusions

We have investigated the use of auditory spectro-temporal
processing of speech for blind estimation of reverberation
time and for single-ended quality measurement of rever-
berant speech. Simulation results show improvement in
estimation accuracy relative to current state-of-art mea-
surement algorithms. The proposed measures are also
shown to be more robust when reverberationand back-
ground noise are present. Furthermore, the insights ob-
tained here can be used to improve the performance of
algorithms that operate in reverberant environments, e.g.,
speech recognizers and dereverberation algorithms.
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