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Abstract—Image quality metrics can be classified as generic ferent distortion classes — JPEG and JPEG2000 compression,
or degradation specific. Degradation specific measures perform additive (white) noise, Gaussian blurring, and bit errors as
poorly under *mismatched” conditions. Generic measures, on  gimy|ated in a wireless fast fading environment. We employ
the other hand, may compromise quality measurement accuracy . . ) .
while gaining robustness to variation in distortion conditions. To machine learning method_s to sift out the most salient fefit“f‘?s
improve the accuracy-robustness tradeoff’ we emp|oy Support- from a p00| Of 27 Cand|date fea.tures. Feature SeIeCt|0n IS
vector degradation classification and machine learning tools to performed for each of the five distortion classes described
judiciously combine generic and degradation specific measures. ghove. The selected features are linearly combined to form a
To test our algorithm, composite quality metrics are optimized ¢, mposite measure that is optimal for a given distortion class.

for five different distortion classes. Experiment results show | der to devi bust d . timat fi
that the proposed algorithm achieves improved performance and n order to devise robust (and generic) estimators of image

robustness relative to two benchmark generic quality metrics. ~ quality, we propose a novel degradation-classification assisted
image quality measurement paradigm. A degradation-type

classifier is designed to detect which of the five degradation
classes the test image belongs to. Once a degradation class is
The most reliable way to measure the quality of images $pecified, one of the five composite measures is used. We show
through the use of subjective quality assessment tests suchhas improved robustness and improved quality estimation
the commonly used mean opinion score (MOS) test. Thegerformance are attained with the proposed scheme.
tests, however, are expensive and time consuming, makingrhe remainder of this paper is organized as follows. In
them unsuitable for automatic quality measurement. Objecti@ection Il, a brief overview of subjective and objective image
(machine-based) measurement methods have been the fapusgity measurement methods is given. Section Il describes
of more recent research. Machine-based measurement allties candidate features used in our experiments as well as
computer programs to automate image quality measuremégnd machine learning tools used for feature selection and
in real time, thus playing a crucial role in modern imageegradation-type classification. Lastly, experimental results are
processing applications such as compression, steganalysis, @pérted in Section IV and conclusions in Section V.
communication. Traditionally, error-based quality measures
such as peak signal-to-noise ratio (PSNR) and mean squared II. IMAGE QUALITY MEASUREMENT
Eggrr] g\r:l?va ?oa\(/:zr:);g?eupsci;jr.lysvl\jﬁﬂ ;?Ji?:;:\?:’qzzmivsego?avﬁ].thls section, common subject|ye and ob!ectlve image
. % ality measurement methods are briefly described.
[1]. Current efforts have focused on devising features th
incorporate characteristics of the human visual system. o
When devising perceptually-relevant metrics for image qud: Subjective Assessment Tests
ity measurement, one is faced with the option of devising Subjective image quality assessment tests can be classified
a measure with a specific application in mind (e.g., [2]) as either double- or single-stimulus [5]. Double-stimulus (DS)
devising a generic measure which is applicable to variotests can be further categorized as DS impairment scale (DSIS)
different degradation conditions (e.g., [3]). Degradation sp&ests or DS continuous quality scale (DSCQS) tests. In both
cific measures tend to perform poorly under conditions faases, subjects are presented with two images: the unimpaired
which it was not optimized. Generic measures, on the othariginal (reference) and the impaired processed image. With
hand, may compromise quality measurement accuracy whid§|S tests, subjects are asked to rate the quality of the
gaining robustness to variation in distortion conditions. In thisnpaired image, relative to the quality of the original image
paper, we propose to improve the accuracy-robustness tradesihg the impairment scale described in Table I. Subjects in
by judiciously combining generic and degradation specif@SCQS tests, on the other hand, are not told which of the
measures to form a composite quality measure. two images is the original image. Instead, subjects are asked
Our experiments are carried out with the LIVE imagé¢o rate the quality ofboth images using a continuous scale
database [4] where reference images are corrupted by five difRich is divided into five equal lengths. The five-point scale

I. INTRODUCTION



TABLE |

shown that PSNR is a useful measure for additive white noise
SUBJECTIVE IMAGE QUALITY RATING SCALES.

distortions [8]. Other more complex FR measures that take

Ratng _ MOS Impairment into account models of the human visual system (HVS) have
- been shown to attain more accurate quality predictions; some
5 Excellent Imperceptible . . .
4 Good  Perceptible, but not annoying such measures will be presented in Section IlI-A. _
3 Fair Slightly annoying No-reference (NR) measurement, on the other hand, is a
2 Poor Annoying more challenging problem as it only depends on the im-
1 Bad Very annoying paired image. Such methods are often called single-ended

and distortions are detected and quantified using only the

corresponds to the so-called mean opinion score (MOS) scifgraded image. Currently, NR image quality measurement
described in Table I. Differences between subjective MOS i only feasible if prior knowledge of the image distortion
reference and impaired images can be computed and sRERCESS is available (e.g., JPEG compression [9]). To facil-
measures are termed difference MOS (DMOS). itate NR mga}surement, partial mforma.ltlon. can bg extracted
Subjects in single-stimulus (SS) tests, on the other harfgm the original S|gnal_ and sent as side |_nformat|0n to the
as the name suggests, are presented with only the impai%% measurement algorithm; such method is termed reduced-
images. SS tests can be further classified as categorial or rigierence (RR). Examples of partial information obtained from
categorial. Categorial judgement tests often make use of the original signal include parameters describing natural image
five-point MOS or impairment scales described in Table §_tat|sF|cs_[10] or parameters describing image bIockmes_s-[ll].
Analogous to the DSCQS method, non-categorial tests maké2Piective measurement methods can be further classified as
use of continuous scales. As opposed to DS tests Whg,eegrada_ltlon specific or generic. Degrgdatlon specific measures
subjects rate the quality relative to the original image, subjedtdve Prior knowledge of the degradation process and are able
in SS tests rate the image quality based on personal opinidfgiuantify such distortions. As examples, blocking artifacts
of what high-quality images should look like. are often_quant|f|ed for JPEG image quality estimation; ringing
As described in [6], the LIVE image database used heﬁé‘d plurrmg artifacts are quantlflgd for JPEG2000 quality es-
has been subjectively scored using the non-categorial &&ation, and, as mentioned previously, PSNR can be used for
methodology. Subjects provide their perception of quality dipality estimation of additive nmse-corrupt_ images. Generic
a continuous linear scale which was divided into five equgi€asures, on the other hand, assume no prior knowledge of the
regions marked with the MOS-scale adjectives described f9radation process and, at the cost of possibly lower estima-
Table I. Original images were also evaluated in the sari{@" Performance, are applicable to different degradation types.
experimental session as the impaired images. Thus, desfitdnis study, we propose to use machine learing tools to
being an SS test, quality difference scores (i.e., DMOS) WdllngCIOUS!y combine generic and degrada’_uon speplflc measures
also computed. Moreover, as suggested in [7], in order to mi¢- form improved-performance composite quality measures
imize the variation between individual quality scores, z-scof8at are more robust to different degradation conditions.
transformation is used to normalize the scores. Variation in
individual scores is caused by the fact that not all subjects uég M ACHINE LEARNING FORFEATURE SELECTION AND
the full range of the continuous scale. After normalization, the DEGRADATION-TYPE CLASSIFICATION
quality scores are re-scaled to fill the range from 1 to 100 andin this section, a brief overview of the features used in this
the mean opinion score is obtained for each image. paper is given. Machine learning methods used for feature
As can be seen, subjective testing is reliable but is also véRjning and degradation-type classification, as well as the
expensive and time consuming, making it unsuitable for fr@roposed composite measures, are also introduced.
guent or rapid applications. As a consequence, current research
focuses on devising objective measures that correlate well wih Feature Set
subjective tests. Objective methods can be implemented by, this paper, a pool of 27 full-reference image quality

computer programs and can be used for real time qualifyetrics (features) are investigated. The features fall into six

measurement and control. Common objective image qualiiierent categories based on information extracted from:
measurement methods are described next. 1) pixel-differences (PD)

2) image correlation (IC),

B. Objective Measurement Methods 3) edge stability (ES),

Objective quality measurement methods can be classified?) spectral distance (SD),
into three broad classes: full-, no-, and reduced-reference. Full5) models of the human visual system (HVS), and
reference (FR) measurement, sometimes called double-ende®) structural similarity (SS).
measurement, depends on some form of distance or similafiiye to space constraints, we do not describe each feature
metric between the original and the impaired images. Tradit detail; in lieu, Table Il lists references that describe each
tional FR measures include peak signal-to-noise ratio (PSNigpture. The table also provides a brief description as well
and mean squared error (MSE). Such measures, however, tewesymbols for each feature. It is important to emphasize
been shown to correlate poorly with subjective quality scordéisat the performance of each individual feature has been
[1]. A recent study, however, using the LIVE database hasudied previously either in [8], [12], or [13]. Here, more



TABLE Il TABLE Il
LIST, BRIEF DESCRIPTION AND REFERENCES FOR THE27 FEATURES TOP FEATURES SELECTED BY EACH ALGORITHM FORRPEGAND
JPEG200@COMPRESSION

No. Symbol Description Reference

1 PD1 Mean square error (MSE) [12] Top ‘ JPEG JPEG2000

2 PD.2 Peak signal-to-noise ratio [12] feature

3 PD3 Modified infinity norm [12] | CART MARS SFS CART MARS  SFS
4 PD.4 L*a*p perceptual distortion [12], [14]

5 PD5 L1-norm distortion [12], [15] ggg v v 5 v j
6 PD.6 Maximum difference [12], [15] PD.7 7 7
7 PD.7 Image fidelity [15] .

8 IC.1 Czenakowski correlation [12] IC.1 v v

9 IC.2 Structural content [12], [15] IC.5 v

10 IC.3 Normalized cross-correlation [12], [15] ES.1 v v v
11 IC4 Mean angle similarity [12] ES.2 v v

12 IC5 Mean magnitude-angle similarity [12] ES.3 v

13 ES1 Edge stability MSE [13] SD.2 v

14 ES.2 Pratt measure [12] Sb.3 v

15 ES.3 Mean square gradient error [13] SD.5 v

16 SD.1 Spectral magnitude MSE [12] SD.6 v v
17 SD.2 Spectral phase MSE [12] HVS.1 v v

18 SD.3 Spectral magnitude-phase MSE [12] HVS.2 v v v
19 SD.4 Block spectral magnitude error [12] HVS.3 v v v v v

20 SD5 Block spectral phase error [12] HVS.4 v v v

21 SD.6 Block spectral magnitude-phase error [12] SS.1 v v v v v
22 HVS.1 HVS-modified normalized absolute error [12] SS.2 v

23 HVS.2 HVS-modified normalized MSE [12]

24 HVS.3 HVS-modified MSE [12]

;Z HSVSS f Strusc't:]r'ﬁ”s?;n\i'lvaer'i}:tind o [12]’[54] As can be seen from Table lll, for JPEG compression,

27  SS.2 Universal quality index 3] all three algorithms select HVS-based features (HVS.3 and
HVS.4) and structural similarity features (SS.1). The statistical
) ) ] ) analysis reported in [12] suggests that HVS.3 is in fact a
reliable and robust image quality estimators are proposed fyndamental metric” for JPEG compression:; other reported
combining multiple features to form a composite metric. Tp,ngamental metrics include edge stability (ES.1 as selected
this end, automatic feature selection is used to select the t "SFS) and spectral phase MSE (SD.3 as selected by CART).
seven features from the candidate feature pool. As a proof-gfsr JpEG2000 compression, all three algorithms selected the
concept experiment, we deS|gn.composf|te measures_for eatduified infinity norm (PD.3) as one of the top-selected
of the five distortion types available with the LIVE imaggeatyres. Moreover, of the three selection algorithms, two
database. Online, degradation-type classification is usedglected maximum difference (PD.6) and edge stability (ES.1)
select the optimal composite measure to be used. Fealgasyres. All three algorithms selected a feature from the
selection, composite measures, and degradation classificalifjciural similarity class; while MARS and SFS selected the

are described in the remainder of this section. structural similarity index (SS.1), CART selected the universal
. _ quality index (SS.2). Edge stability and HVS-modified MSE
B. Automatic Feature Selection (HVS.3 as selected by CART and MARS) were shown in

We investigate the effectiveness of two statistical dafa2] to be fundamental metrics for the SPIHT image com-
mining algorithms, namely, classification and regression trep&ession algorithm, a similar wavelet-based coding paradigm
(CART) [16] and multivariate adaptive regression splineg® JPEG2000.

(MARS) [17], and one classical feature selection algorithm From Table 1V, it can be seen that for additive white noise,
— sequential forward selection (SFS). For CART and MARSJI three algorithms select PSNR (PD.2), L1-norm distortion
feature selection and estimator model optimization are p€RD.5), and the Pratt measure (ES.2). Interestingly, the results
formed jointly, thus the selected features maximize the corneported in [12] suggest that MSE is the only fundamental
lation between estimated DMOS and subjective DMOS. Thmeetric for additive noise distortions. As can be seen from
SFS algorithm, on the other hand, starts with the variabilee tables, MSE (PD.1) is not selected by any of the three
that is most correlated with subjective DMOS, and at eaeligorithms; in fact, feature PD.1 is not selected for any of
step adds a new variable that, together with the previotie five distortion classes. For Gaussian blur distortions, the
ones, most accurately predicts subjective DMOS via lineanly feature selected by all three algorithms is the universal
regression. A partial F-test is incorporated in the algorithiguality index (SS.2). Two of the three algorithms selected
such that the variables chosen have small variance. The tapgle similarity (IC.4), gradient error (ES.3), and spectral
seven selected features for JPEG and JPEG2000 compressimagnitude-phase error (SD.3) as top features; the latter is also
for each feature selection algorithm, are given in Table lishown in [12] to be a fundamental metric for blur effects.
In addition, Table IV exhibits the top-selected features fdn addition, edge stability (ES.1 as selected by CART) and
additive white noise, Gaussian blur, and bit errors. HVS-modified MSE (HVS.3 as selected by MARS) were also



TABLE IV
TOP FEATURES SELECTED FOR EACH ALGORITHM FOR ADDITIVE WHITE NOISEGAUSSIAN BLUR AND BIT ERROR DISTORTIONS

Top ‘ White noise Gaussian blur Bit errors

feature | cART MARS SFS CART MARS SFS CART MARS SFS

PD.2 v v v v v v

PD.3 v

PD.4 v v

PD.5 v v v

PD.6 v v

PD.7 v

IC.2 v

IC.3 v v v

IC.4 v

IC.5

ES.1 v

ES.2 v v
v

ES.3
SD.2 v

SD.3 v v v v v
SD.4 v

SD.5 v v

SD.6 v v
HVS.1 v v
HVS.3 v
HVS.4 v v

SS.1 v v v

SS.2 v v v v v

TABLE V

shown to be fundamental metrics for blurriness effects. Lastly,
COEFFICIENTS FOR THE COMPOSITE MEASURES DESCRIBED E(\ﬁ.)

for distortions caused by bit errors, two of the three algo-
rithms selected PSNR (PD.2), maximum difference (PD.6),
normalized cross-correlation (IC.3), spectral magnitude-phase

Coefficients per distortion class

MSE (SD.3), HVS-normalized absolute error (HVS.1), and b JPEG  JPEG2000  Noise Blur Bt error
structural similarity index (SS.1) as top features. Qo -77.83  -306.02 38.77 29.63 60.91
Fy 3.27 0.08 3.66 -59.89  -63.00
C. Composte Measures OO
As mentioned previously, CART and MARS perform joint 4 7.72 91.74 -23.69  -9.92 28.55
feature selection and model optimization. For SFS-selected 5 -0.01  -72.23 0.96 0.06 -0.01
Fg -40.62 0.11 -219.28  -369.04 -

features, composite measures are designed based on a linear

o : Fy 95.74 375.97 0.01 -0.02 -
combination of the selected features. Composite measgpyes

are designed for each of the five distortion classes by TABLE VI
CONFUSION MATRIX FOR DEGRADATION-TYPE CLASSIFICATION.
N
Qi = Qo + Z by, i=1,...,5 1) True Predicted class
i=t class  “3PEG  JPEG2000 Noise Blur  Bit Error

where Qo is a constant termq; represents the coefficients

(weights) fpr each feature an#l; are the selected fegtures JPJEP(5E§)OO 82 go % % 13
described in Tables Il and IV. The parametdr describes Noise 0 0 73 0 0
the number of selected features, i.&,,= 7, except for the Blur 0 0 0 67 5
bit error degradation condition where only = 5 features Bit error 3 2 0 0 68

were selected. Subjective DMOS scores are used to train the
composite measures. To this end, images belonging to each
degradation class are separated into two disjoints sets afid
two-fold cross validation is performed. Table V exhibits the As seen in Section IlI-B, different features are selected
coefficients from the validation trial that resulted in superidor different degradation types. As a consequence, degrada-
quality estimation performance. In the table, featufesefer tion classification is needed such that an optimal compos-
to the features described in Tables IIl and IV in the order @& measure is used. In this study, we employ radial basis
they appear in the tables (from top to bottom); as an examplenction support vector classifiers (SVC), trained offline, for
for JPEG compressiorks is equivalent to feature ES.1. degradation-type classification [18]. Table VI presents the

Degradation Classification



TABLE VII
PERFORMANCE COMPARISON BETWEEN PROPOSED COMPOSITE METRICS AES.1AND SS.2.

Proposed SS.1 SS.2
R RMSE R %R RMSE %| RMSE R %R RMSE %| RMSE

JPEG  0.985 5.46 0.965 57.1 8.41 351 0.909 835 13.21 58.7
JPEG2000 0.968 6.26 0.960 20.0 7.34 14.8 0.885 721 12.12 48.4

Noise  0.989 4.22 0.977 50.0 5.85 27.9 0.946 78.7 9.07 53.5

Blur 0.979 3.82 0.934 67.4 6.81 43.9 0.957 50.0 5.26 27.4
Bit error 0.974 6.36 0.946 51.9 9.51 331 0.954 435 8.51 25.3
Average - - - 49.3 - 31.0 - 65.6 - 42.7

(average) confusion matrix obtained for the cross-validatideature subsets are selected for five different distortion classes
trials. An average misclassification rate of 4.1% is attained; asd composite measures are designed for each class. Machine
will be shown in Section 1V, such classification errors are né¢arning tools are used to detect, online, which degradation-

detrimental to overall image quality measurement. specific composite measure to use. The proposed quality mea-
surement method attains improved performance and is shown
IV. EXPERIMENT RESULTS to be more robust against different degradation conditions.
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