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Abstract— Image quality metrics can be classified as generic
or degradation specific. Degradation specific measures perform
poorly under “mismatched” conditions. Generic measures, on
the other hand, may compromise quality measurement accuracy
while gaining robustness to variation in distortion conditions. To
improve the accuracy-robustness tradeoff, we employ support-
vector degradation classification and machine learning tools to
judiciously combine generic and degradation specific measures.
To test our algorithm, composite quality metrics are optimized
for five different distortion classes. Experiment results show
that the proposed algorithm achieves improved performance and
robustness relative to two benchmark generic quality metrics.

I. I NTRODUCTION

The most reliable way to measure the quality of images is
through the use of subjective quality assessment tests such as
the commonly used mean opinion score (MOS) test. These
tests, however, are expensive and time consuming, making
them unsuitable for automatic quality measurement. Objective
(machine-based) measurement methods have been the focus
of more recent research. Machine-based measurement allows
computer programs to automate image quality measurement
in real time, thus playing a crucial role in modern image
processing applications such as compression, steganalysis, and
communication. Traditionally, error-based quality measures
such as peak signal-to-noise ratio (PSNR) and mean squared
error (MSE) have been used. Such measures, however, have
been shown to correlate poorly with subjective quality scores
[1]. Current efforts have focused on devising features that
incorporate characteristics of the human visual system.

When devising perceptually-relevant metrics for image qual-
ity measurement, one is faced with the option of devising
a measure with a specific application in mind (e.g., [2]) or
devising a generic measure which is applicable to various
different degradation conditions (e.g., [3]). Degradation spe-
cific measures tend to perform poorly under conditions for
which it was not optimized. Generic measures, on the other
hand, may compromise quality measurement accuracy while
gaining robustness to variation in distortion conditions. In this
paper, we propose to improve the accuracy-robustness tradeoff
by judiciously combining generic and degradation specific
measures to form a composite quality measure.

Our experiments are carried out with the LIVE image
database [4] where reference images are corrupted by five dif-

ferent distortion classes – JPEG and JPEG2000 compression,
additive (white) noise, Gaussian blurring, and bit errors as
simulated in a wireless fast fading environment. We employ
machine learning methods to sift out the most salient features
from a pool of 27 candidate features. Feature selection is
performed for each of the five distortion classes described
above. The selected features are linearly combined to form a
composite measure that is optimal for a given distortion class.
In order to devise robust (and generic) estimators of image
quality, we propose a novel degradation-classification assisted
image quality measurement paradigm. A degradation-type
classifier is designed to detect which of the five degradation
classes the test image belongs to. Once a degradation class is
specified, one of the five composite measures is used. We show
that improved robustness and improved quality estimation
performance are attained with the proposed scheme.

The remainder of this paper is organized as follows. In
Section II, a brief overview of subjective and objective image
quality measurement methods is given. Section III describes
the candidate features used in our experiments as well as
the machine learning tools used for feature selection and
degradation-type classification. Lastly, experimental results are
reported in Section IV and conclusions in Section V.

II. I MAGE QUALITY MEASUREMENT

In this section, common subjective and objective image
quality measurement methods are briefly described.

A. Subjective Assessment Tests

Subjective image quality assessment tests can be classified
as either double- or single-stimulus [5]. Double-stimulus (DS)
tests can be further categorized as DS impairment scale (DSIS)
tests or DS continuous quality scale (DSCQS) tests. In both
cases, subjects are presented with two images: the unimpaired
original (reference) and the impaired processed image. With
DSIS tests, subjects are asked to rate the quality of the
impaired image, relative to the quality of the original image
using the impairment scale described in Table I. Subjects in
DSCQS tests, on the other hand, are not told which of the
two images is the original image. Instead, subjects are asked
to rate the quality ofboth images using a continuous scale
which is divided into five equal lengths. The five-point scale



TABLE I

SUBJECTIVE IMAGE QUALITY RATING SCALES.

Rating MOS Impairment

5 Excellent Imperceptible
4 Good Perceptible, but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

corresponds to the so-called mean opinion score (MOS) scale
described in Table I. Differences between subjective MOS for
reference and impaired images can be computed and such
measures are termed difference MOS (DMOS).

Subjects in single-stimulus (SS) tests, on the other hand,
as the name suggests, are presented with only the impaired
images. SS tests can be further classified as categorial or non-
categorial. Categorial judgement tests often make use of the
five-point MOS or impairment scales described in Table I.
Analogous to the DSCQS method, non-categorial tests make
use of continuous scales. As opposed to DS tests where
subjects rate the quality relative to the original image, subjects
in SS tests rate the image quality based on personal opinions
of what high-quality images should look like.

As described in [6], the LIVE image database used here
has been subjectively scored using the non-categorial SS
methodology. Subjects provide their perception of quality on
a continuous linear scale which was divided into five equal
regions marked with the MOS-scale adjectives described in
Table I. Original images were also evaluated in the same
experimental session as the impaired images. Thus, despite
being an SS test, quality difference scores (i.e., DMOS) were
also computed. Moreover, as suggested in [7], in order to min-
imize the variation between individual quality scores, z-score
transformation is used to normalize the scores. Variation in
individual scores is caused by the fact that not all subjects use
the full range of the continuous scale. After normalization, the
quality scores are re-scaled to fill the range from 1 to 100 and
the mean opinion score is obtained for each image.

As can be seen, subjective testing is reliable but is also very
expensive and time consuming, making it unsuitable for fre-
quent or rapid applications. As a consequence, current research
focuses on devising objective measures that correlate well with
subjective tests. Objective methods can be implemented by
computer programs and can be used for real time quality
measurement and control. Common objective image quality
measurement methods are described next.

B. Objective Measurement Methods

Objective quality measurement methods can be classified
into three broad classes: full-, no-, and reduced-reference. Full-
reference (FR) measurement, sometimes called double-ended
measurement, depends on some form of distance or similarity
metric between the original and the impaired images. Tradi-
tional FR measures include peak signal-to-noise ratio (PSNR)
and mean squared error (MSE). Such measures, however, have
been shown to correlate poorly with subjective quality scores
[1]. A recent study, however, using the LIVE database has

shown that PSNR is a useful measure for additive white noise
distortions [8]. Other more complex FR measures that take
into account models of the human visual system (HVS) have
been shown to attain more accurate quality predictions; some
such measures will be presented in Section III-A.

No-reference (NR) measurement, on the other hand, is a
more challenging problem as it only depends on the im-
paired image. Such methods are often called single-ended
and distortions are detected and quantified using only the
degraded image. Currently, NR image quality measurement
is only feasible if prior knowledge of the image distortion
process is available (e.g., JPEG compression [9]). To facil-
itate NR measurement, partial information can be extracted
from the original signal and sent as side information to the
NR measurement algorithm; such method is termed reduced-
reference (RR). Examples of partial information obtained from
the original signal include parameters describing natural image
statistics [10] or parameters describing image blockiness [11].

Objective measurement methods can be further classified as
degradation specific or generic. Degradation specific measures
have prior knowledge of the degradation process and are able
to quantify such distortions. As examples, blocking artifacts
are often quantified for JPEG image quality estimation; ringing
and blurring artifacts are quantified for JPEG2000 quality es-
timation, and, as mentioned previously, PSNR can be used for
quality estimation of additive noise-corrupt images. Generic
measures, on the other hand, assume no prior knowledge of the
degradation process and, at the cost of possibly lower estima-
tion performance, are applicable to different degradation types.
In this study, we propose to use machine learning tools to
judiciously combine generic and degradation specific measures
to form improved-performance composite quality measures
that are more robust to different degradation conditions.

III. M ACHINE LEARNING FORFEATURE SELECTION AND

DEGRADATION-TYPE CLASSIFICATION

In this section, a brief overview of the features used in this
paper is given. Machine learning methods used for feature
mining and degradation-type classification, as well as the
proposed composite measures, are also introduced.

A. Feature Set

In this paper, a pool of 27 full-reference image quality
metrics (features) are investigated. The features fall into six
different categories based on information extracted from:

1) pixel-differences (PD),
2) image correlation (IC),
3) edge stability (ES),
4) spectral distance (SD),
5) models of the human visual system (HVS), and
6) structural similarity (SS).

Due to space constraints, we do not describe each feature
in detail; in lieu, Table II lists references that describe each
feature. The table also provides a brief description as well
as symbols for each feature. It is important to emphasize
that the performance of each individual feature has been
studied previously either in [8], [12], or [13]. Here, more



TABLE II

L IST, BRIEF DESCRIPTION, AND REFERENCES FOR THE27 FEATURES.

No. Symbol Description Reference

1 PD.1 Mean square error (MSE) [12]
2 PD.2 Peak signal-to-noise ratio [12]
3 PD.3 Modified infinity norm [12]
4 PD.4 L*a*p perceptual distortion [12], [14]
5 PD.5 L1-norm distortion [12], [15]
6 PD.6 Maximum difference [12], [15]
7 PD.7 Image fidelity [15]
8 IC.1 Czenakowski correlation [12]
9 IC.2 Structural content [12], [15]
10 IC.3 Normalized cross-correlation [12], [15]
11 IC.4 Mean angle similarity [12]
12 IC.5 Mean magnitude-angle similarity [12]
13 ES.1 Edge stability MSE [13]
14 ES.2 Pratt measure [12]
15 ES.3 Mean square gradient error [13]
16 SD.1 Spectral magnitude MSE [12]
17 SD.2 Spectral phase MSE [12]
18 SD.3 Spectral magnitude-phase MSE [12]
19 SD.4 Block spectral magnitude error [12]
20 SD.5 Block spectral phase error [12]
21 SD.6 Block spectral magnitude-phase error [12]
22 HVS.1 HVS-modified normalized absolute error [12]
23 HVS.2 HVS-modified normalized MSE [12]
24 HVS.3 HVS-modified MSE [12]
25 HVS.4 Similarity weight [12], [14]
26 SS.1 Structural similarity index [6]
27 SS.2 Universal quality index [3]

reliable and robust image quality estimators are proposed by
combining multiple features to form a composite metric. To
this end, automatic feature selection is used to select the top-
seven features from the candidate feature pool. As a proof-of-
concept experiment, we design composite measures for each
of the five distortion types available with the LIVE image
database. Online, degradation-type classification is used to
select the optimal composite measure to be used. Feature
selection, composite measures, and degradation classification
are described in the remainder of this section.

B. Automatic Feature Selection

We investigate the effectiveness of two statistical data
mining algorithms, namely, classification and regression trees
(CART) [16] and multivariate adaptive regression splines
(MARS) [17], and one classical feature selection algorithm
– sequential forward selection (SFS). For CART and MARS,
feature selection and estimator model optimization are per-
formed jointly, thus the selected features maximize the corre-
lation between estimated DMOS and subjective DMOS. The
SFS algorithm, on the other hand, starts with the variable
that is most correlated with subjective DMOS, and at each
step adds a new variable that, together with the previous
ones, most accurately predicts subjective DMOS via linear
regression. A partial F-test is incorporated in the algorithm
such that the variables chosen have small variance. The top-
seven selected features for JPEG and JPEG2000 compression,
for each feature selection algorithm, are given in Table III.
In addition, Table IV exhibits the top-selected features for
additive white noise, Gaussian blur, and bit errors.

TABLE III

TOP FEATURES SELECTED BY EACH ALGORITHM FORJPEGAND

JPEG2000COMPRESSION.

Top JPEG JPEG2000

feature CART MARS SFS CART MARS SFS

PD.3 X X X X X
PD.6 X X
PD.7 X X
IC.1 X X
IC.5 X
ES.1 X X X
ES.2 X X
ES.3 X
SD.2 X
SD.3 X
SD.5 X
SD.6 X X

HVS.1 X X
HVS.2 X X X
HVS.3 X X X X X
HVS.4 X X X
SS.1 X X X X X
SS.2 X

As can be seen from Table III, for JPEG compression,
all three algorithms select HVS-based features (HVS.3 and
HVS.4) and structural similarity features (SS.1). The statistical
analysis reported in [12] suggests that HVS.3 is in fact a
“fundamental metric” for JPEG compression; other reported
fundamental metrics include edge stability (ES.1 as selected
by SFS) and spectral phase MSE (SD.3 as selected by CART).
For JPEG2000 compression, all three algorithms selected the
modified infinity norm (PD.3) as one of the top-selected
features. Moreover, of the three selection algorithms, two
selected maximum difference (PD.6) and edge stability (ES.1)
measures. All three algorithms selected a feature from the
structural similarity class; while MARS and SFS selected the
structural similarity index (SS.1), CART selected the universal
quality index (SS.2). Edge stability and HVS-modified MSE
(HVS.3 as selected by CART and MARS) were shown in
[12] to be fundamental metrics for the SPIHT image com-
pression algorithm, a similar wavelet-based coding paradigm
to JPEG2000.

From Table IV, it can be seen that for additive white noise,
all three algorithms select PSNR (PD.2), L1-norm distortion
(PD.5), and the Pratt measure (ES.2). Interestingly, the results
reported in [12] suggest that MSE is the only fundamental
metric for additive noise distortions. As can be seen from
the tables, MSE (PD.1) is not selected by any of the three
algorithms; in fact, feature PD.1 is not selected for any of
the five distortion classes. For Gaussian blur distortions, the
only feature selected by all three algorithms is the universal
quality index (SS.2). Two of the three algorithms selected
angle similarity (IC.4), gradient error (ES.3), and spectral
magnitude-phase error (SD.3) as top features; the latter is also
shown in [12] to be a fundamental metric for blur effects.
In addition, edge stability (ES.1 as selected by CART) and
HVS-modified MSE (HVS.3 as selected by MARS) were also



TABLE IV

TOP FEATURES SELECTED FOR EACH ALGORITHM FOR ADDITIVE WHITE NOISE, GAUSSIAN BLUR AND BIT ERROR DISTORTIONS.

Top White noise Gaussian blur Bit errors

feature CART MARS SFS CART MARS SFS CART MARS SFS

PD.2 X X X X X X
PD.3 X
PD.4 X X
PD.5 X X X
PD.6 X X
PD.7 X
IC.2 X
IC.3 X X X
IC.4 X X
IC.5 X
ES.1 X X X X
ES.2 X X X X X
ES.3 X X X X
SD.2 X
SD.3 X X X X X
SD.4 X
SD.5 X X
SD.6 X X

HVS.1 X X
HVS.3 X
HVS.4 X X
SS.1 X X X
SS.2 X X X X X

shown to be fundamental metrics for blurriness effects. Lastly,
for distortions caused by bit errors, two of the three algo-
rithms selected PSNR (PD.2), maximum difference (PD.6),
normalized cross-correlation (IC.3), spectral magnitude-phase
MSE (SD.3), HVS-normalized absolute error (HVS.1), and
structural similarity index (SS.1) as top features.

C. Composite Measures

As mentioned previously, CART and MARS perform joint
feature selection and model optimization. For SFS-selected
features, composite measures are designed based on a linear
combination of the selected features. Composite measuresQi

are designed for each of the five distortion classes by

Qi = Q0 +
N∑

j=1

αjFj , i = 1, . . . , 5 (1)

where Q0 is a constant term,αj represents the coefficients
(weights) for each feature andFj are the selected features
described in Tables III and IV. The parameterN describes
the number of selected features, i.e.,N = 7, except for the
bit error degradation condition where onlyN = 5 features
were selected. Subjective DMOS scores are used to train the
composite measures. To this end, images belonging to each
degradation class are separated into two disjoints sets and
two-fold cross validation is performed. Table V exhibits the
coefficients from the validation trial that resulted in superior
quality estimation performance. In the table, featuresFi refer
to the features described in Tables III and IV in the order as
they appear in the tables (from top to bottom); as an example,
for JPEG compression,F3 is equivalent to feature ES.1.

TABLE V

COEFFICIENTS FOR THE COMPOSITE MEASURES DESCRIBED BY(1)

Coefficients per distortion class

Fi JPEG JPEG2000 Noise Blur Bit error

Q0 -77.83 -306.02 38.77 29.63 60.91
F1 3.27 0.08 3.66 -59.89 -63.00
F2 0.17 0.13 -0.01 0.35 0.07
F3 0.51 7.06 -0.02 49.23 0.02
F4 7.72 91.74 -23.69 -9.92 28.55
F5 -0.01 -72.23 0.96 0.06 -0.01
F6 -40.62 0.11 -219.28 -369.04 –
F7 95.74 375.97 0.01 -0.02 –

TABLE VI

CONFUSION MATRIX FOR DEGRADATION-TYPE CLASSIFICATION.

True Predicted class
class JPEG JPEG2000 Noise Blur Bit Error

JPEG 86 0 0 0 1
JPEG2000 2 80 0 0 3

Noise 0 0 73 0 0
Blur 0 0 0 67 5

Bit error 3 2 0 0 68

D. Degradation Classification

As seen in Section III-B, different features are selected
for different degradation types. As a consequence, degrada-
tion classification is needed such that an optimal compos-
ite measure is used. In this study, we employ radial basis
function support vector classifiers (SVC), trained offline, for
degradation-type classification [18]. Table VI presents the



TABLE VII

PERFORMANCE COMPARISON BETWEEN PROPOSED COMPOSITE METRICS ANDSS.1AND SS.2.

Proposed SS.1 SS.2

R RMSE R %↑ R RMSE %↓ RMSE R %↑ R RMSE %↓ RMSE

JPEG 0.985 5.46 0.965 57.1 8.41 35.1 0.909 83.5 13.21 58.7
JPEG2000 0.968 6.26 0.960 20.0 7.34 14.8 0.885 72.1 12.12 48.4

Noise 0.989 4.22 0.977 50.0 5.85 27.9 0.946 78.7 9.07 53.5
Blur 0.979 3.82 0.934 67.4 6.81 43.9 0.957 50.0 5.26 27.4

Bit error 0.974 6.36 0.946 51.9 9.51 33.1 0.954 43.5 8.51 25.3

Average – – – 49.3 – 31.0 – 65.6 – 42.7

(average) confusion matrix obtained for the cross-validation
trials. An average misclassification rate of 4.1% is attained; as
will be shown in Section IV, such classification errors are not
detrimental to overall image quality measurement.

IV. EXPERIMENT RESULTS

Two-fold cross-validation is used to test the performance of
the proposed composite measures; comparisons are carried out
with SS.1 and SS.2, the two generic measures that attained the
best overall performance. We report only the performance of
the composite measures described by (1) since they resulted in
superior performance relative to CART or MARS. Pearson cor-
relation (R) and root-mean-square error (RMSE), averaged
over the two cross validation trials, are used as performance
figures to evaluate the three quality measures. To compute the
performance of the benchmark metrics,3rd order polynomial
fitting is applied to each metric in order to map it into the
subjective DMOS scale.

Test results are reported in Table VII. Columns labeled
“%↑ R” and “%↓ RMSE,” describe the improvement inR
and the decrease inRMSE, respectively, attained by the
proposed composite measure over the benchmark. Since cor-
relations attained by benchmark metrics are fairly high, we opt
to report “improvement” in correlation, instead of “increase”
in correlation. Correlation improvement is defined as:

% ↑ R =
Rcomp −Rind

1−Rind
∗ 100% (2)

where Rcomp and Rind are the correlation attained by the
proposed composite metrics and the individual benchmark
metrics, respectively. The improvement indicates percentage
reduction of the gap to perfect correlation. As can be seen,
the proposed composite metrics are capable of improving
correlation by an average 49.3% and 65.6% relative to SS.1
and SS.2, respectively. An average reduction inRMSE of
31% and 42.7% is also attained. Careful analysis of the
performance figures reported in Table VII also suggests that
the proposed measures attain improved robustness against
different degradation conditions.

V. CONCLUSIONS

We have investigated the use of three data mining algorithms
to select the best seven features from a pool of 27 candidate
image quality metrics. As an embodiment of the work, optimal

feature subsets are selected for five different distortion classes
and composite measures are designed for each class. Machine
learning tools are used to detect, online, which degradation-
specific composite measure to use. The proposed quality mea-
surement method attains improved performance and is shown
to be more robust against different degradation conditions.

REFERENCES

[1] Z. Wang and A. Bovik,Modern Image Quality Assessment, ser. Synthe-
sis Lectures on Image, Video and Multimedia Processing. Morgan and
Claypool, Feb. 2006.

[2] G. Fahmy and L. Karam, “Prediction of the quality of JPEG-compressed
color images based on the SCIELAB metric,” inProc. Asilomar Conf.
on Signals, Systems and Computers, vol. 2, 2000, pp. 1054–1057.

[3] Z. Wang and A. Bovik, “A universal image quality index,”IEEE Signal
Processing Letters, vol. 9, no. 3, pp. 81–84, March 2002.

[4] H. Sheikh, Z. Wang, L. Cormack, and A. Bovik, “LIVE image
quality assessment database release 2.” [Online]. Available: http:
//live.ece.utexas.edu/research/quality

[5] ITU-R BT-500.11, “Methodology for the subjective assessment of the
quality of television pictures,” Intl. Telecom. Union, 2002.

[6] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,”IEEE Trans.
on Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004.

[7] A. van Dijk and J.-B. Martens, “Subjective quality assessment of
compressed images,”Signal Processing, vol. 58, pp. 235–252, 1997.

[8] H. Sheikh, M. Sabir, and A. Bovik, “A statistical evaluation of recent
full reference image quality assessment algorithms,”IEEE Trans. Image
Proc., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.

[9] Z. Wang, H. Sheikh, and A. Bovik, “No-reference perceptual quality
assessment of jpeg compressed images,” inProc. IEEE Intl. Conf. on
Image Processing, Sept. 2002, pp. 477–480.

[10] Z. Wang and E. Simoncelli, “Reduced-reference image quality assess-
ment using a wavelet-domain natural image statistic model,” inProc.
SPIE Conf. Human Vision and Electronic Imaging, Jan. 2005.

[11] I. Gunawan and M. Ghanbari, “Reduced-reference picture quality esti-
mation using local harmonic amplitude information,” inProc. London
Communications Symposium, Sept. 2003.

[12] I. Avcibas, B. Sankur, and K. Sayood, “Statistical evaluation of image
quality measures,”Journal of Electronic Imaging, vol. 11, no. 2, pp.
206–223, April 2002.

[13] D. Carevic and T. Caelli, “Region-based coding of color images us-
ing Karhunen-Loeve transform,”Graphical Models and Image Proc.,
vol. 59, no. 1, pp. 27–38, Jan. 1997.

[14] T. Frese, C. A. Bouman, and J. P. Allebach, “A methodology for
designing image similarity metrics based on human visual system
models,” Purdue University, West Lafayette, IN, Tech. Rep. TR-ECE
97-2, Feb 1997.

[15] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their
performance,”IEEE Trans. Communications, vol. 43, no. 12, pp. 2959–
2965, Dec. 1995.

[16] L. Breiman, J. Friedman, R. Olshen, and C. Stone,Classification and
Regression Trees. Monterey, CA: Wadsworth & Brooks, 1984.

[17] J. H. Friedman, “Multivariate adaptive regression splines,”The Annals
of Statistics, vol. 19, no. 1, pp. 1–141, March 1991.

[18] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 1995,
New York.


