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Abstract— Separation of heart and lung sounds from breath
sound recordings is a challenging task due to the temporal and
spectral overlap of the two signals. In this paper, the use ofa
spectro-temporal representation to improve signal separation
is investigated. The representation is obtained by means of
a frequency decomposition (termed modulation frequency) of
temporal trajectories of short-term spectral components.Exper-
iments described herein suggest that improved separability of
heart (HS) and lung sounds (LS) is attained in the modulation
frequency domain. Bandpass and bandstop modulation filters
are designed to separate HS and LS signals from breath
sound recordings, respectively. Visual and auditory inspection,
quantitative analysis, as well as algorithm execution timeare
used to assess algorithm performance. Log-spectral distances
below 1 dB corroborate our listening test which found no
audible artifacts in separated heart and lung sound signals.

Index Terms: Spectro-temporal processing, modulation fil-
tering, modulation spectrum, heart sounds, lung sounds.

I. I NTRODUCTION

Auscultation of lung sounds is a useful procedure for
detection of pulmonary diseases. Lung sounds (LS) in breath
sound recordings, however, are corrupted by intrusive quasi-
periodic heart sounds (HS), which alter the temporal and
spectral characteristics of the recording. Heart sound can-
celation is a difficult task as both HS and LS signals have
overlapping frequency spectra, in particular at frequencies
below 150 Hz. The simplest method to reduce HS effects is
to apply a highpass filter with cutoff frequency varying from
50-150 Hz. However, due to overlapping LS/HS spectra,
highpass filtering also degrades the LS signal, which may
lead to an erroneous diagnosis of pulmonary dysfunction.

More complex methods toreduce (or cancel) HS from
breath sound recordings have been described in the lit-
erature. Proposed methods have been based on adaptive
filtering techniques [1], wavelet denoising [2], combination
of HS localization-and-removal and LS prediction [3], time-
frequency filtering [4], or independent component analysis
[5], to name a few. Several such approaches have been
shown to reliably reduce HS effects [6]. Subjective analysis,
however, has suggested that due to the temporal and spectral
overlap between heart and lung sounds, HS reduction may re-
sult in noisy or possibly “non-recognizable” lung sounds [6].

In this paper, we venture away from conventional temporal
and/or spectral signal representations and explore using an
alternate spectro-temporal representation toseparate HS and
LS signals from breath sound recordings. In the proposed

domain, henceforth termed modulation frequency domain,
enhanced separability of heart and lung sounds is attained.
Linear phase bandpass and bandstop modulation filters are
designed to separate HS and LS signals, respectively. We
emphasize that the proposed method, unlike many methods
proposed in the literature, does not depend on a reference
heartbeat signal (commonly obtained from an electrocar-
diogram), on heart sound localization, or on lung sound
prediction. Experiments with data from two healthy subjects
suggest that accurate signal separation is attained and that
audible artifacts arenot introduced by the proposed separa-
tion method. Moreover, it is shown that algorithm execution
time is approximately one order of magnitude lower than a
HS cancelation algorithm based on time-frequency filtering.

The remainder of this paper is organized as follows.
Section II introduces the spectro-temporal signal represen-
tation. Section III describes the proposed modulation filter-
ing methodology and experimental results are presented in
Section IV. Lastly, conclusions are presented in Section V.

II. SPECTRO-TEMPORAL REPRESENTATION OFBREATH

SOUND RECORDINGS

Spectro-temporal processing consists of the frequency
decomposition oftemporal trajectories of short-term signal
spectral components, as illustrated in Fig. 1 (a). The breath
sound recording is windowed and a base transform (e.g.,
Fourier transform) is applied to generate the time-frequency
(termed acoustic frequency to distinguish from modulation
frequency) representation of the signal. A second transform,
termed modulation transform, is then applied to the temporal
trajectory of the magnitude component of each acoustic fre-
quency signal. The resulting modulation spectrum contains
information regarding the rate of change of signal spectral
components. Note that if invertible transforms are used and
phase components are kept unaltered, the original signal can
be perfectly reconstructed [7].

The assumption investigated here is that the spectral
content of heart sounds change at rates different from that
of the spectral content of lung sounds. Our experiments
have suggested that important modulation spectral contentof
heart sounds typically fall between approximately 2-20 Hz.
Lung sounds, on the other hand, are shown to be broadband
with more important modulation frequency content situated
at low frequencies (< 2 Hz); such behavior is expected due
to the “stationarity” of lung sounds. The modulation spectra
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Fig. 1. Modulation spectral analysis – (a) signal processing steps, and the spectro-temporal representation of a breath sound recording with (b) showing
mostly LS, and (c) showing overlapping HS and LS. Modulationspectral plots are zoomed in to depict acoustic frequenciesbelow 500 Hz.

shown in Fig. 1 (b) and (c) assist in illustrating this behavior.
Subplot (b) depicts the modulation spectrum of a segment of
the breath sound recording containing mostly LS (recorded
at the right 4th intercostal space during high airflow rate).
Subplot (c) depicts the modulation spectrum of a segment
of breath sound recorded at the center of the chest during
medium airflow, thus containing both HS and LS. As noted,
both signals contain important (and overlapping) frequency
content at acoustic frequencies ranging from 15-50 Hz. The
modulation frequency axis, however, introduces an additional
dimension at which improved separability can be attained.
As a consequence, modulation filtering is proposed to blindly
separate heart and lung sounds from breath sound recordings.

III. M ODULATION FILTERING: METHODOLOGY

Modulation filtering is described as filtering of the tem-
poral trajectories of short-term spectral components. For
the sake of notation, lets(f, m), f = 1, . . . , N and
m = 1, . . . , T , denote the short-term spectral component at
the f th frequency bin andmth time step of the short-term
analysis.N andT denote total number of frequency bands
and time steps, respectively. For a fixed frequency band
f = F , s(F, m), m = 1, . . . , T , represents theF th band
temporal trajectory. Two finite impulse response modulation
filters are employed and depicted in Fig. 2. The first is a
bandpass filter with cutoff modulation frequencies at 1 Hz
and 20 Hz (dotted line); the second is the complementary
bandstop filter (solid line). Modulation frequencies above
20 Hz are kept as they are shown to improve the naturalness
of separated LS signals.

A. Signal Processing

In our experiments, the Gabor transform is used for
spectral analysis. The Gabor transform is a unitary transform
(energy is preserved) and consists of an inner product with
basis functions that are windowed complex exponentials. In
our experiments, doubly over-sampled Gabor transforms are
used and implemented based on discrete Fourier transforms
(DFT), as depicted in Fig. 3. First, the breath sound recording
is windowed by a power complementary window (more
details in Section III-B). AnN -point DFT is then taken and
the magnitude (|s(f, m)|) and phase (∠s(f, m)) components
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Fig. 2. Magnitude response of bandpass and bandstop modulation filters.

of each frequency bin are input to a so-called “modulation
processing” module.

Modulation filtering and phase delay compensation are
performed in the modulation processing module. The “per
frequency bin” magnitude trajectory|s(f, m)|, m = 1, . . . , T

is filtered using the bandpass and the bandstop modulation
filters to generate signals|ŝ(f, m)| and |s̃(f, m)|, respec-
tively. The remaining modulation processing step consists
of delaying the phase by an integer number of samples; the
delay is dependent on the order of the linear phase filter used
(more details in Section III-B). The outputs of the modulation
processing modules are the bandpass and bandstop filtered
signals and the delayed phase components∠s̄(f, m). Two
N -point IDFTs are then taken. The first IDFT (namely
IDFT-1) takes as input theN |ŝ(f, m)| and∠s̄(f, m) signals
to generatês(m). Similarly, IDFT-2 takes as input signals
|s̃(f, m)| and ∠s̄(f, m) to generatẽs(m). The outputs of
the IDFT-1 and IDFT-2 modules are windowed by the
power complementary window and overlap-and-add is used
to reconstruct HS and LS signals, respectively.

B. Implementation Details

In our experiments, a square-root Hann window of length
20 milliseconds with 50% overlap (frame shifts of 10 mil-
liseconds) is used for the Gabor transform. In order to attain
accurate resolution at 1 Hz modulation frequency, higher
order filters are needed. Here, 150-tap linear phase filters
are used; such filter lengths are equivalent to analyzing 1.5s
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Fig. 3. Block diagram of the proposed modulation filtering approach to blind HS separation from LS recordings.

temporal trajectories. Moreover, it is observed with bandpass
filtered signals that the removal of lowpass modulation
spectral content may result in negative power spectral values.
As with the spectral subtraction paradigm used in speech
enhancement algorithms, a half-wave rectifier can be used.
Rectification, however, may introduce unwanted perceptual
artifacts to the separated HS signal. To avoid such artifacts,
one can opt to filter the cubic-root compressed magnitude
trajectories in lieu of the magnitude trajectories. In such
instances, cubic power expansion must be performed prior
to taking the IDFT. In our experiments, cubic compression-
expansion of bandpass filtered signals is used and negligible
rectification activation rates (<2%) are obtained.

IV. EXPERIMENTS

In this section, a description of the data used in our
experiments is given and experimental results are presented.

A. Data: Breath Sound Recordings

The University of Manitoba breath sound recordings are
used in our experiments; the data has been made publicly
available by the Biomedical Engineering Laboratory. Data is
obtained from two healthy subjects aged 25 and 30 years.
Piezoelectric contact accelerometers were used to record
the respiratory sounds from the subjects in sitting position.
Accelerometers were secured with double-sided adhesive
tape rings at the following five locations: (1) right and (2)
left midclavicular, 2nd intercostal space, (3) right and (4) left
4th intercostal space, and (5) center of chest.

Subjects were asked to maintain their target breathing
at low (7.5 ml/s/kg), medium (15 ml/s/kg), and high (22.5
ml/s/kg) flow rates. Subjects were instructed to breathe such
that one full breath occurred every two to three seconds
at every flow rate and had at least five breaths at each
target flow. Three recordings were made per subject and
each recording consisted of approximately 20 s at each target
flow and concluded with an approximate 5 s of breath hold
(total of ∼ 65 s). During breath hold, subjects were asked
to hold their breath with a closed glottis, thus allowing fora
reference heartbeat signal and background noise characteri-
zation. Breath sound signals were digitized with 10240 Hz
sample rate and 16-bit precision. In our experiments, data
is downsampled to 5 kHz in order to reduce computational
complexity. More detail about the data acquisition process
can be found in [8].

B. Experimental Results

The proposed method is tested on breath sound signals
captured at the five aforementioned locations. For the sake
of brevity, the plots in Fig. 4 depict signals recorded at
the center of the chest; similar performance is observed
for signals captured at the other four locations. Subplot
(a) depicts, from top to bottom, the airflow signal, breath
sound signal, and the separated HS and LS signals. Note
that HS signals are accurately separated even at high flow
rates. Moreover, subplot (b) illustrates zoomed-in plots of a
segment of low airflow breath sound along with the separated
HS and LS signals. As observed, HS and LS signals are
accurately separated even at low airflow rates.

Spectral plots are further depicted in Fig. 5. Subplot (a)
illustrates the spectra of “HS-free” breath sounds and the
separated LS signal. Power spectra are averaged over 5 s of
HS-free breath sounds, which were randomly selected from
segments of the breath sound recording between successive
heartbeats (selected segments were within±20% of the
target low airflow rate). Similarly, subplot (b) depicts average
power spectra of breath-hold sounds and the separated HS
signal. Power spectra are averaged over the approximate 5 s
breath-hold duration at the end of the recording session.
In order to quantitatively assess the performance of the
proposed method, the average log-spectral distance (LSD)
between the aforementioned breath sound spectraP (ω) and
separated signal spectrâP (ω) is used. The LSD, expressed
in decibel, is given by

LSD =

√

√

√

√

1

2π

∫

ω

−ω

[

10 log
10

P (ω)

P̂ (ω)

]2

dω. (1)

In speech coding research, two signals with LSD< 1 dB
are considered to be perceptually indistinguishable [9]. Using
this same difference limen for spectral transparency, it is
observed that average LSD of 0.61 dB and 0.31 dB are
attained for the separated LS and HS signals, respectively.
Hence, audible artifacts are not introduced by the proposed
separation method; this is further corroborated by listening
to the separated LS and HS signals.

C. A Note on Algorithm Execution Time

Algorithm execution time is also an important figure of
merit. The proposed algorithm is implemented using Matlab
version 7.2 Release 2006a. Simulations are run on a PC
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Fig. 4. Waveforms from top to bottom: (a) airflow signal, breath sound recording, separated HS, and separated LS; and (b) zoomed in plots of a segment
of breath sound and the respective separated heart and lung sounds.
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Fig. 5. Spectral plots of breath sounds and (a) separated LS and (b) HS signals.

with a 2.8 GHz Pentium 4 processor and 2 GB of RAM.
The execution time for heart and lung sound separation of
a 65 s breath sound recording, downsampled to 5 kHz, is
approximately 5.04 s (i.e., 0.08×realtime); execution time
doubles if the original sampling rate is used. Furthermore,
if only bandstop filtering is performed (equivalent to HS
cancelation), algorithm execution time is reduced to 3.16 s
for 5 kHz sample rate. Hence, the computational load of
the proposed algorithm is several orders of magnitude lower
than that reported in [4] for HS cancelation algorithms based
on adaptive filtering (12 h), wavelet denoising (7 min), and
time-frequency filtering (2 min) using a similar 60 s breath
sound recording with 10240 Hz sample rate.

V. CONCLUSION

Conventional approaches to heart and lung sound sepa-
ration are based on temporal or spectral signal processing
techniques. A major disadvantage of such approaches, how-
ever, is that both sound signals overlap in the time and
frequency domains. In this paper, we have proposed an alter-
nate spectro-temporal signal representation which introduces
an additional dimension (termed modulation frequency) at
which improved signal separability can be attained. Visual
inspection suggests successful signal separation. Quantitative
analysis is used to demonstrate that audible artifacts are
not introduced to separated heart and lung sounds; informal
listening tests corroborate such findings. Moreover, algorithm

execution time is reduced by approximately one order of
magnitude relative to a state-of-art HS cancelation algorithm
based on time-frequency filtering.
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