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Abstract

This paper investigates the contribution of features whichcon-
vey long-term spectro-temporal (ST) information for the pur-
pose of automatic emotional speech classification. The ST rep-
resentation is obtained by means of a modulation filterbank de-
composition of long-term temporal envelopes of the outputsof
a gammatone filterbank. The two-dimensional discrete cosine
transform is used to reduce the dimensionality of the represen-
tation; candidate features are then derived from statistics com-
puted from the DCT coefficients. Sequential forward feature
selection is used to select the most salient features. Two types
of experiments are described which use the Berlin emotional
speech database to test the performance of the ST features alone
and in combination with prosodic features. In a multi-class
experiment, simulation results with a support vector classifier
show that a 44% reduction in classification error is attained
once prosodic features are combined with the proposed ST fea-
tures. Additionally, in a one-against-all experiment, an average
increase in F-score of 33% is attained when the proposed ST
features are included.
Index Terms: speech emotion recognition, spectro-temporal
features, modulation spectrum, affective computing.

1. Introduction
Emotion is an essential element of human communication, thus
automatic recognition of emotions in speech has become an ac-
tive research area as wide applications exist, e.g. to add “emo-
tional intelligence” to human-computer interaction, to design
lively humanoid robots, and to improve the performance of cur-
rent speech recognition and synthesis systems. Features em-
ployed for emotion recognition can be broadly classified as con-
taining prosodic or spectral information. A brief review ofre-
cent studies [1, 2, 3, 4, 5] reveals that, while statistical mea-
sures of pitch trajectories and intensity contours are commonly
used as prosodic features, features obtained from short-time
(∼20 ms) speech segments, e.g., mel-frequency cepstral coef-
ficients (MFCC), are widely used for spectral content charac-
terization. Moreover, short-term (∼50 ms) temporal informa-
tion is commonly used and incorporated in the form of delta or
delta-delta features [1, 4, 5].

However, recent psychoacoustical and neurophysiological
evidence indicates the existence of spectro-temporal receptive
fields in mammalian auditory cortex which can extend up to
temporal spans of hundreds of milliseconds [6, 7, 8]. These
studies reveal the limitation of features derived from short-time
spans as the long-time temporal information used by human lis-
teners is discarded. In this paper, we exploit long-term spectro-
temporal (ST) information to derive a novel feature set which
is shown to improve the performance of automatic speech emo-

A u d i t o r yF i l t e r b a n k H i l b e r t E n v e l o p eC o m p u t a t i o nE n e r g y S u m m a t i o nO v e r B a n d s M o d u l a t i o nF i l t e r b a n k2 D � D C T
P r e �P r o c e s s i n g

S t a t i s t i c sC o m p u t a t i o n
)( ns )( ns i )( niH)( ni jH),( jiE kS p e e c h F r a m i n g)(, nki jH F e a t u r eS e l e c t i o n8j1   

23i1   

C l a s s i f i e rL o g �E n e r g yP r o s o d i c I n f o r m a t i o nE x t r a c t i o n F e a t u r e E x t r a c t i o nS T R e p r e s e n t a t i o n D e r i v a t i o n
Figure 1:Flowchart of the proposed algorithm.

tion recognition. The proposed features are derived from an
auditory spectro-temporal representation of speech. The rep-
resentation is obtained by first filtering the speech signal with
a critical-band gammatone filterbank, to emulate the process-
ing performed by the cochlea. Temporal envelopes are then ex-
tracted, by means of the Hilbert transform, from the output of
each critical-band filter. Lastly, a modulation filterbank is ap-
plied to each temporal envelope. The resulting representation is
henceforth referred to as the modulation spectrum.

Deployment of the modulation filterbank allows for charac-
terization of the rate of change of the signal temporal envelope.
Since the rate at which people’s vocal articulators (e.g. lips,
jaw, tongue) move varies as their emotional states change [9],
we expect features derived from this signal representationto
be useful for emotion recognition. To validate this assump-
tion, two types of experiments with the Berlin emotional speech
database are conducted to test the proposed features alone and
in combination with the commonly used prosodic features. In
a multi-class experiment, by combining the proposed features
with prosodic features, a recognition accuracy improvement
from 62% to 78.7% is observed (i.e., an approximately 44%
reduction in classification error rate). In a one-against-all (bi-
nary) experiment, an average increase in F-score of 33% is at-
tained once the proposed ST features are included. Improved
performance indicates that long-term ST information is useful
for speech emotion recognition.

2. ST Representation of Speech

The auditory ST representation is obtained via the steps de-
picted within the top-most dashed box in Fig. 1, denoted by
“ST Representation Derivation”. First, the original speech sig-
nal x(n) is normalized and resampled to 8kHz before process-
ing; inactive speech segments are discarded. The preprocessed
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Figure 2: Frequency response of a 23-band gammatone filter-
bank with center frequencies ranging from 125Hz to 3.6kHz.

Speech Signal
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Figure 3:One example of Hilbert envelope: the solid and dotted
lines trace the speech signal and its Hilbert envelope, respec-
tively.

signal s(n) is then filtered by a critical-band gammatone fil-
terbank, with 23 filters, to emulate the auditory processingof
acoustic signals by the human cochlea. The bandwidths of these
filters are proportional to their center frequencies, as character-
ized by the equivalent rectangular bandwidth (ERB) [10]:

ERBk =
Fk

Qear

+ Bmin , (1)

whereFk is the center frequency (in Hz) of thekth critical-
band filter. Qear andBmin are set to9.26449 and24.7, re-
spectively. The frequency response of the auditory filterbank
employed in our work is depicted in Fig. 2. The first filter cen-
tered at 125Hz has a bandwidth of 38Hz whereas the last filter
centered at 3568Hz has a bandwidth of 410Hz.

Using the critical-band filterbank for signal decomposition,
23 outputssi(n) are obtained (1 ≤ i ≤ 23). The Hilbert en-
velopeHi(n) is then computed for eachsi(n). In the time
domain, the Hilbert envelopeH(n) of a real-valued signalx(n)
is the magnitude of the analytic representation ofx(n), i.e.,

H(n) =
√

x2(n) + H2{x(n)}. (2)

whereH{·} denotes the Hilbert transform. Fig. 3 illustrates a
representative Hilbert envelope (dotted lines) for a short-term
speech segment.

An eight-band modulation filterbank, as shown in Fig. 4, is
then applied to eachHi(n) to generate outputsHij(n), where
1 ≤ j ≤ 8, with i and j being indexes for auditory and
modulation channels, respectively.Hij(n) is then framed by
a rectangular window of250 ms length with30 ms frame shift.
This relatively long temporal extent is determined according to
the physiological studies mentioned earlier and helps to capture
long-term temporal dynamics information.

Denote the output of theith auditory channel andjth mod-
ulation band at thekth frame asHij,k(n). Thus, the ST energy
representation of framek, termedEk(i, j), is given by

Ek(i, j) =

N
∑

n=1

H2

ij,k(n) , (3)
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Figure 4: Frequency response of an 8-band modulation filter-
bank with center frequencies ranging from 4Hz to 128Hz.

Figure 5: E(i, j) for one frame of aneutral speech file: low
channel index indicates low frequency; energy is normalized by
the maximum value for visual purpose, sic passim.

where1 ≤ k ≤ T , with N andT representing the number of
samples in one frame and the number of active speech frames,
respectively. Therefore, each frame results in a23× 8 modula-
tion energy matrix. Fig. 5 depictsE(i, j) of one frame from a
neutral speech file. With respect to the physical limitation and
inertia of vocal organs, most of the dynamic details are concen-
trated within low modulation frequencies, as shown in Fig. 5.

3. Feature Extraction
In this section, a description of the feature extraction module, as
depicted within the bottom dashed box in Fig. 1, is presented.
Prosodic features considered in our experiments are also de-
scribed.

3.1. 2D-DCT and feature computation

The two-dimensional Discrete Cosine Transform (2D-DCT)
is applied to the log of the energy term described by (3),
log(Ek(i, j)), on a frame-by-frame basis in order to perform di-
mensionality reduction. DCT coefficientsCk(p, q), calculated
for thekth frame, are used to compute features for speech emo-
tion recognition. Coefficients are computed as:

Ck(p, q) = α(p)β(q)

L−1
∑

i=0

M−1
∑

j=0

log(Ek(i + 1, j + 1))Φ(p, q) ,

(4)
where0 ≤ p ≤ L − 1, 0 ≤ q ≤ M − 1, and

Φ(p, q) = cos(
π(2i + 1)p

2L
) cos(

π(2j + 1)q

2M
) . (5)

Here,L = 23, M = 8, and

α(p) =

{

1/
√

L, p = 0
√

2/L, p 6= 0
, β(q) =

{

1/
√

M, q = 0
√

2/M, q 6= 0
.



In our implementation, the 25 DCT coefficients with the
25 largest variances are selected for feature computation.The
choice for the number of selected coefficients is a compromise
between feature candidate pool size and recognition accuracy.
Lastly, eight statistics are computed from each of the 25 selected
coefficients: mean, standard deviation, maximum, minimum,
range, median, 25% and 75% quartiles. In total, 200 (25 × 8)
scalar features are calculated from the ST representation.

3.2. Prosodic features

Prosodic features have been proven useful for speech emotion
classification and are widely used in previous studies [1, 2,3, 4].
In order to explore the contributions of the proposed features to
prosodic features, pitch and intensity trajectories are extracted
from the speech signal. To capture local temporal dynamics
information, the first and second derivatives of such trajecto-
ries are also calculated. The eight aforementioned statistics are
computed for the six trajectories, resulting in 48 prosodicfea-
tures. In total, 248 features (48 prosodic and 200 proposed)are
extracted from each speech signal. Sequential forward feature
selection (SFS) [11] is used to select the most salient features. It
is observed in our experiments that selecting the top 15 features
suffices, as adding more features did not improve performance.

4. Experimental Evaluation
In this section, a description of the database used in our exper-
iments is given. Experimental results are also presented and
discussed.

4.1. Berlin emotional speech database

The Berlin emotional speech database employed in our exper-
iment describes emotions as discrete emotional states. The
database was recorded with16 bit precision and 16kHz sam-
pling rate for the purpose of studying acoustical features of
emotional speech. Five female and five male actors each uttered
ten sentences (5 short and5 longer, generally between1.5 and
4 seconds) in German to simulate seven emotions. Utterances
with a subjective recognition rate better than 80% were chosen,
as evaluated by a subjective listening test. The final numberof
speech files in the presented database is535 divided (not uni-
formly) among seven emotions:anger (127), boredom (81),
disgust (46),fear (69), joy (71),neutral (79) andsadness
(62). More details can be found in [12].

4.2. Results and discussion

A radial basis function support vector classifier (SVC) is em-
ployed for classification [13]. Unless otherwise specified,all
results to follow are obtained using10-fold cross-validation.
Fifty utterances are randomly selected from each emotion. In
our experiments, the emotion “disgust” is excluded as it con-
tains a limited number of files, thus only six emotion classesare
used. In total, each cross validation trial uses270 speech files
for training and 30 files for testing.

Three multi-class classification experiments are performed,
using: (i) only prosodic features, (ii) only the proposed fea-
tures, (iii) combined prosodic-proposed features. Tables 1 and
2 list classification results using only prosodic and the proposed
features, respectively; an average classification accuracy of 62%
and 69.3% is attained. Further analysis of the confusion matri-
ces shows that the emotionjoy attains the poorest classification
accuracy and is usually misclassified asanger. Moreover, the

Table 1: Classification accuracy withprosodic features (the
left-most column refers to the true emotion, sic passim).
Emotion Anger Boredom Fear Joy Neutral Sadness
Anger 68% 4% 0% 24% 4% 0%

Boredom 0% 76% 0% 0% 16% 8%
Fear 8% 4% 68% 4% 8% 8%
Joy 48% 0% 4% 44% 4% 0%

Neutral 4% 16% 4% 0% 52% 24%
Sadness 0% 12% 0% 0% 24% 64%

Table 2:Classification accuracy with theproposed features
Emotion Anger Boredom Fear Joy Neutral Sadness
Anger 68% 0% 16% 16% 0% 0%

Boredom 0% 72% 4% 0% 16% 8%
Fear 0% 4% 64% 12% 16% 4%
Joy 20% 8% 4% 60% 8% 0%

Neutral 4% 16% 12% 8% 60% 0%
Sadness 0% 8% 0% 0% 0% 92%

Table 3:Classification accuracy withcombined features
Emotion Anger Boredom Fear Joy Neutral Sadness
Anger 80% 0% 0% 20% 0% 0%

Boredom 0% 80% 0% 0% 12% 8%
Fear 8% 0% 80% 8% 4% 0%
Joy 28% 0% 4% 68% 0% 0%

Neutral 0% 16% 0% 0% 72% 12%
Sadness 0% 4% 4% 0% 0% 92%

proposed features exhibit a significantly stronger capability of
classifyingsadness. Fig. 6 compares the ST representation
E(i, j) of sadness with neutral; in order to gain some insight
into the statistical trend,E(i, j) is averaged over all frames of
all “sad” or “neutral” speech files. The difference in the fig-
ure is notable - forsadness, most of the energy is concentrated
within very low auditory and modulation channels. Such be-
havior of “sad” is not witnessed for other emotion classes. For
sad speech, it is known that vocal organs move slower, e.g.,
in [9], it is reported that emotionsadness is associated with
the relatively smaller average tongue tip movement velocity of
vowels in comparison with other emotions. Therefore, more
pronounced ST energy in lower modulation frequencies is ex-
pected forsadness. On the contrary, ST energy is observed in
higher modulation frequency channels (e.g. the last 4 channels
of the modulation filterbank) for emotions such asanger and
joy.

Table 3 reports classification accuracy for the combined
feature set. As observed from Tables 1 and 3, an average 16
percentage-point improvement is attained once ST featuresare
considered (from 62% with only prosodic features to 78.7% for
the combined features). This improvement translates into an
approximately 44% reduction in classification error rate. This
improvement in performance suggests that the proposed ST fea-
tures are advantageous additions to the widely used prosodic
features.

In order to further explore the gains obtained with the pro-
posed features, one-against-all (i.e. binary) classification exper-
iments are performed. In this experiment, six binary SVCs
are trained, each of which is used to recognize one of the six
emotions, with the remaining five emotions treated as an “un-
wanted” class. The F-score [14] is calculated as the perfor-
mance measure as it is particularly useful when data is not
equally distributed among classes. The F-scoreF is given by:

F =
2 × P × R

P + R
, (6)



Figure 6: Top and bottom panels depict averageE(i, j) for
emotionsadness andneutral, respectively.

whereP andR refer toPrecision andRecall, respectively.1

Fig. 7 compares the classification results for the three types
of features. It is evident that the proposed features improve
the overall classification accuracy. Compared with the F-score
computed for prosodic features, the improvement achieved by
including the proposed features is 33% on average (the mini-
mum improvement is 5% forboredom and the maximum 83%
for sadness).

Furthermore, it is also evident from the confusion matrices
shown in Tables 1-3 that the exhibited tendency of misclassifi-
cation is similar – if we consideranger, fear, joy as high ac-
tivation emotions andboredom,neutral, sadness as low ac-
tivation emotions, confusions within the same activation class
are more pronounced. Such misclassification behavior can also
be found in [1, 3, 5]. A further experiment with the combined
features shows that a 96.3% accuracy is achieved when only
classifying the two activation levels. Hence improved emotion
recognition performance may be attained via cascaded classifi-
cation as described in [3].

5. Conclusions
We have introduced a novel feature set for speech emotion
recognition which is based on an auditory spectro-temporal
(ST) representation of speech. The ST representation is derived
to simulate the stimuli perception process in human cortical re-
ceptive fields. By modeling such characteristics, the proposed
features are shown to improve the performance of speech emo-
tion recognition. Experimental results show that the proposed
features outperform conventional prosodic features when tested

1This type of F-score is also known as F1 measure, because
Precision andRecall are evenly weighted.Precision for a class
is the number of true positives for the class divided by the total number
of test samples classified as belonging to the class.Recall for a class is
the number of true positives for the class divided by the total number of
test samples that actually belong to the class.F reaches its best value
at1 and worst value at0 by definition.

Figure 7:F-score of one-against-all classification tests.

alone and render a substantial improvement in recognition accu-
racy when combined with prosodic features. Future work will
investigate the application of the proposed features to address
the problem of dealing with real-world emotional speech, which
mainly involves the following issues: spontaneous (vs. acted)
speech, continuous (vs. discrete) emotions, and noisy (vs.noise-
free) conditions [2, 4].
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