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ABSTRACT

Features derived from an auditory spectro-temporal represen-
tation of speech are proposed for robust far-field speaker iden-
tification. The auditory representation is obtained by first
filtering the speech signal with a gammatone filterbank. A
modulation filterbank is then applied to the temporal enve-
lope of each gammatone filter output. Compared to com-
monly used mel-frequency cepstral coefficients (MFCC), the
proposed features are shown to be more robust to mismatched
conditions between enrollment and test data and are less sen-
sitive to increasing reverberation time (RT ). Experiments
with simulated and recorded far-field speech show that a Gaus-
sian mixture model based identification system, trained on the
proposed features, attains an average improvement in identifi-
cation accuracy of 15% relative to a system trained on MFCC.
Improvements of up to 85% are attained for largerRT .
Index Terms: Speaker identification, reverberation, modula-
tion spectrum, Gaussian mixture model, reverberation time.

1. INTRODUCTION

In today’s fast-paced society, mobility and the ability to multi-
task have been the driving forces behind the advances in hands-
free speech communications. Applications include voice ac-
tivated controls in automobiles, personal computers and cell-
phones, as well as teleconferencing. Far-field hands-free ap-
plications, however, introduce a series of performance de-
grading factors for automatic speaker recognition systems.
The two most prominent factors include channel mismatch
(mismatch between train and test data) and reverberation.

To compensate for channel mismatch conditions, tech-
niques such as cepstral mean substraction (CMS), mean sub-
straction and variance normalization (CMSVN), and relative
spectral (RASTA) filtering, have been proposed [1]. In re-
verberant environments, mismatch conditions can also occur
due to different room transfer functions and varying acoustic
reverberation levels1. In [2], room transfer functions are as-
sumed to be time-invariant and improved speaker verification

1Reverberation levels are often quantified by means of the so-called re-
verberation time (RT ) which is the interval required for the sound energy to
decay by 60dB after the sound source is turned off.

performance is attained by designing speaker models for sev-
eral different room transfer functions. Online, a “room trans-
fer function classifier” is used to determine, from the speech
signal, which speaker model to use. The major limitation of
such an approach is that, in practice, room transfer functions
are time-varying and can change considerably with acoustic
source positioning or placement of room furnishings.

Alternately, speech enhancement (dereverberation) tech-
niques can be used to reduce the detrimental effects of rever-
beration. In [3], microphone arrays combined with CMS are
used to improve speaker recognition performance. More re-
cently, the use of reverberation compensation, feature warp-
ing, CMS, and multiple microphone combination was pro-
posed [4]. Dereverberation, however, is a difficult and often
ill-conditioned problem, in particular if only a single far-field
microphone is available. In fact, a recent study has shown that
only modest improvement inspeechrecognition performance
is attained for dereverberated speech [5].

In this paper, an alternate approach is taken to improve au-
tomatic speaker identification (ASI) performance in far-field
reverberant environments. In particular, a novel feature set,
shown to be insensitive to increasing reverberation time (RT )
and robust to mismatch reverberation conditions between en-
rollment and test data, is presented. The features are derived
from an auditory spectro-temporal representation of speech.
Experiments carried out with single-channel simulated rever-
berant speech and with multi-channel recorded reverberant
speech illustrate the gains obtained by using the proposed
features. Comparisons with a baseline system show that im-
provements in identification accuracy of up to 85% for large
RT can be attained with the proposed system.

2. REVERBERANT SPEECH DATABASES

In this section, a description is given of the two reverberant
speech databases used in our experiments.

2.1. Single-Channel Simulated Reverberant Speech

The SIREAC (SImulation of REal ACoustics) tool [6] is used
to artificially generate reverberant speech with differentRTs.
The room impulse responses represent typical office environ-
ments andRT values between 0.2-0.5 s (0.1 s increments)
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Fig. 1. PZM microphone setup at ICSI meeting room.

and 1 s are simulated; the latter simulates a larger meeting
room. In our experiments, reverberant speech is generated by
corrupting a subset of the TIMIT database with the SIREAC
tool. Speech files are downsampled to 8 kHz and utterances
from 340 of the 630 speakers are used. Of the ten available ut-
terances per speaker, eight are used to train the speaker model
and two are kept for testing. After reverberation is introduced,
this amounts to 3400 test speech signals.

2.2. Multi-Channel Recorded Reverberant Speech

The ICSI Meeting Corpus [7] is used to test the proposed al-
gorithm on real multi-channel reverberant audio recordings.
The four table microphones are omnidirectional pressure zone
microphones (PZM) and are arranged according to Fig. 1.
Meetings involved anywhere from three to 10 participants
(averaging six) with levels of English language fluency rang-
ing from fluent to “hard-to-transcribe.” The full corpus con-
tains speech files for 53 speakers; however, data for only 29
speakers has been made freely available by ICSI (the full cor-
pus is licensed by LDC). Of these 29 speakers, speech files
from 23 speakers are used in our experiments. The remaining
six speakers did not provide sufficient material to accurately
train speaker models. Of the data available, 80% is used for
training and 20% is left for testing.

3. SYSTEM DESCRIPTION

In this section, the proposed auditory spectro-temporal fea-
tures are described as well as the proposed ASI system.

3.1. Spectro-Temporal Features

The proposed features are extracted from an auditory spectro-
temporal representation of speech commonly termedmodula-
tion spectrum. To obtain such a representation, the speech sig-
nal is first filtered by a bank of critical-band filters. A critical-
band gammatone filterbank, with 23 filters, is used to emulate
the processing performed by the cochlea. The filter center fre-
quencies range from 125 Hz to 3.5 kHz and filter bandwidths
are characterized by the equivalent rectangular bandwidth. As
examples, the first and last filters have bandwidths of 38 Hz
and 410 Hz, respectively. The Hilbert temporal envelope is
then obtained for each of the 23 cochlear filter outputs.

Temporal envelopes are multiplied by a 256 ms window
with 32 ms shifts and analyzed with an eight-filter modula-
tion filterbank. The center frequencies and bandwidths of the
modulation filters are described in Table 1. Here, 256 ms
frames are used to obtain appropriate modulation frequency

Table 1. Modulation filter center frequencies (fc) and band-
widths (BW ) expressed in Hz.

Modulation Frequency Band Index

1 2 3 4 5 6 7 8

fc 4.0 6.5 10.7 17.6 28.9 47.5 78.1 128.0
BW 2.4 3.9 6.5 11.0 18.2 29.0 47.6 78.8

resolution. The auditory representation, for a given framej,
is denoted asXj = {x1,j , . . . x8,j}, wherexm,j ,m = 1, . . . , 8
is a23 dimensional vector containing one energy value (nor-
malized by the maximum energy obtained over all modulation
frequency bands) for each cochlea frequency band. Hence-
forth, the notation̄X will be used to denote the auditory rep-
resentationXj averaged over active speech frames.

The motivation for using a spectro-temporal representa-
tion of speech originates from the known fact that the diffuse
reverberant tail can be modeled as an exponentially damped
Gaussian white noise process [8]. AsRT increases, the sig-
nal attains more Gaussian white-noise like properties. In ad-
dition, it is known that the Hilbert envelope can contain fre-
quencies up to the bandwidth of its originating signal [9]. For
clean (unreverberated) speech, Hilbert envelopes contain fre-
quencies ranging from 2 Hz - 20 Hz [10, 11] with peaks at ap-
proximately 4 Hz, corresponding to the syllabic rate of spo-
ken speech [12]. With reverberant speech, however, higher
Hilbert envelope frequencies (henceforth refereed to as mod-
ulation frequencies) are also expected due to the “whitening”
effects of the diffuse tail. In fact, since the cochlear filter cen-
tered at the lowest acoustic frequency (125Hz) has a band-
width of 38Hz, it is expected that reverberation effects be
more pronounced beyond such frequencies (i.e., modulation
frequency bands 5-8, c.f. Table 1).

The plots in Fig. 2 assist in illustrating the effects of in-
creasingRT on different modulation frequency bands. Sub-
plots (a)-(d) depict̄X for a female speaker in clean and re-
verberant conditions withRT = 0.4, 0.7 and1s, respectively.
Similar behavior is observed for utterances spoken by male
speakers. Note the increase in energy at higher modulation
frequency bands asRT increases. As conjectured above, more
pronounced reverberation effects are witnessed for modula-
tion frequency bands 5-8. Hence, in order to devise an ASI
system that is robust to increasingRT , we propose to use
features extracted from the first four modulation frequency
channels. The proposed ASI system is described next.

3.2. Proposed ASI System

Gaussian mixture (GM) densities are used to modelxm,j for
the lowest four modulation frequency bands (m = 1, . . . , 4).
A GM density consists of a weighted sum ofM component
densitiesp(x|Λ) =

∑M
i=1 αibi(x), whereαi, i = 1, ...,M

are the mixture weights, withαi ≥ 0 and
∑M

i=1 αi = 1,
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Fig. 2. X̄ for (a) clean and (b) reverberant speech with
RT = 0.4 s, (c) 0.7 s, and (d) 1 s, for a female speaker.

and bi(x) are Gaussian densities with mean vectorµi and
covariance matrixΣi. The parameter list,Λ={λ1, . . . ,λM},
defines a particular GM model, whereλi = {µi, Σi, αi}.

For each speaker, one GM model is trained for each mod-
ulation frequency band, for a total of four models over the four
lowest bands; each model comprises 32 diagonal components.
Clean speech is used for training in order to demonstrate the
robustness of the system to mismatched reverberation condi-
tions. Identification is based on the log-likelihood (LLm,k)
measure computed forN active speech frames

LLm,k =
N∑

j=1

log(pm(xm,j |Λm,k)),

wherem indexes the modulation frequency band,pm and
Λm,k represent, for such band, the GM model and GM pa-
rameters for speakerk, respectively. Given a group ofNS

speakers, the identified speakerŜ is obtained using the fol-
lowing log-likelihoood test

Ŝ = arg max
1≤k≤NS

{max(LL1,k, LL2,k, LL3,k, LL4,k)}.

4. EXPERIMENT SETUP

In this section, the baseline system and experiments on simu-
lated and recorded reverberant speech are described.

4.1. Baseline System

The widely used GM model based speaker identification sys-
tem is used as the baseline [13]. Feature vectors consist of
12th order mel-frequency cepstral coefficients (MFCC) ap-
pended with12th order delta MFCC; in pilot experiments, it
was observed that the inclusion of double-delta coefficients

0 0.2 0.4 0.6 0.8 1
45

50

55

60

65

70

75

80

85

90

95

100

RT (s)

Id
en

tif
ic

at
io

n 
A

cc
ur

ac
y 

(%
)

 

 

Proposed
MFCC−CMSVN−delta

Fig. 3. Identification accuracy versusRT .

reduced identification accuracy at higherRT . MFCC are de-
rived from a 26-channel mel-scale filterbank and the zeroth
order coefficient (log-energy) is kept to form a 25 dimensional
feature vector. Coefficients are computed from 25 ms frames
with 10 ms shifts; only informative active speech frames are
kept. Additionally, three channel compensation schemes are
investigated: CMS, CMSVN, and RASTA. GM models with
64 diagonal components are used per speaker.

4.2. Experiment 1 - Simulated Data

The proposed algorithm is first tested on the simulated re-
verberant speech signals described in Section 2.1. The plots
in Fig. 3 depict identification accuracy versusRT for the
proposed scheme as well as for the baseline algorithm with
CMSVN channel compensation, as it resulted in superior per-
formance. As observed, baseline performance degrades al-
most linearly forRT ≥ 0.4 s. The performance of the pro-
posed system, on the other hand, is shown to be insensitive to
increasingRT . Interestingly, baseline performance is slightly
superior to that of the proposed system for lowerRT values
(≤ 0.3 s). It is conjectured that this gap in performance is due
to the difference in complexity of the GM speaker models; re-
call the baseline system usesM = 64, whereas the proposed
systemM = 32. Since the proposed method uses longer
windows (and window shifts) relative to the baseline system,
roughly three times less training vectors are available. Hence,
more complex speaker models are harder to obtain with short
duration training data, as is the case with TIMIT. Strategies
to overcome this limitation, such as maximuma posteriori
(MAP) adaptation for GM training, are currently being in-
vestigated. Nonetheless, an average improvement of approxi-
mately 15% in identification accuracy is attained with the pro-
posed scheme; 85% improvement is attained forRT = 1 s.

4.3. Experiment 2 - Real Data

The ICSI database is a multichannel database recorded in a
noisy and reverberant meeting room withRT ∼ 0.3 s. Noise



Table 2. Matched and mismatched ASI performance.

Matched (%) Mismatched (%)

Channel Baseline Proposed (gain %) Baseline Proposed

E 82.1 95.7 (16.6) 78.2 86.9 (11.1)
F 81.2 92.8 (14.3) 75.1 89.9 (19.7)
6 79.6 95.7 (20.2) 76.7 85.5 (11.5)
7 78.7 91.3 (16.0) 75.8 84.1 (10.9)

sources include low-level hum of meeting room lights and
fans (in particular for microphones no. 6 and 7), as well as
noise from nearby elevators, hallway conversations, and laugh-
ter from other meeting participants. It is observed that the pro-
posed feature set is robust to (quasi-)stationary noises, such as
those produced by the lights and fan. Quasi-stationary noises
show up in low modulation frequency channels (< 1Hz), thus
are not captured by the proposed feature set. Speech-like
noise and competing speakers, on the other hand, may af-
fect the proposed features. Hence, as is common with other
ASI systems, a noise suppression algorithm is applied to re-
duce non-stationary noise. Noise-suppressed speech signals
are used to test both the proposed and the baseline system.

Table 2 reports identification accuracy for matchedand
mismatched conditions. Matched train-test conditions indi-
cate that speaker models were trained and tested from signals
captured by the same microphone. Mismatched performance
is the average over the three remaining train-test combina-
tions. Performance is compared to that of the baseline system
with CMSVN channel compensation. As can be seen, the pro-
posed scheme outperforms the baseline system by an average
17% for matched and 13.3% for mismatched conditions.

5. DISCUSSION AND CONCLUSION

The plot in Fig. 3 shows that a slight improvement in identi-
fication performance is attained with the proposed system for
RT = 1 s relative toRT ≤ 0.5 s; in contrast, the baseline
system performance degrades monotonically with increasing
RT. Although counter intuitive at first, this behavior can be
explained by the insights described in [14]. Envelopes of
x1,j are shown to resemble spectral envelopes obtained from
higher order (≥20) linear prediction analysis of the speech
signal. As such, for smallerRT , the reflections create irregular-
period pitch pulses, thus distorting the excitation spectrum
and hence the linear prediction (LP) envelope. With increas-
ing RT , the excitation looks more Gaussian-noise like, thus
having less impact on the LP envelope. Combined with infor-
mation from multiple modulation frequency bands, slightly
higher identification performance is attained for largerRT .
In summary, the proposed ASI system is shown to be insen-
sitive to increasingRT and robust to mismatched conditions
between enrollment and test data, two desirable properties for
reverberant far-field speaker recognition applications.
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