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Abstract—This study investigated the inclusion of physiological
responses due to mental activity tasks as complementary in-
formation for improved-performance brain-computer interfaces
(BCI) based on near-infrared spectroscopy (NIRS). Cortical
hemodynamic responses due to music imagery tasks, combined
with physiological responses, were collected from six able-bodied
participants. Hidden Markov models (HMM) were used to model
the normative physiological and hemodynamic responses of the
individual at rest. A normalized log-likelihood measured was
proposed for automated detection of music imagery events, which
in turn, were used as BCI control signals. Experimental results
suggest that improved performance is attained once physiological
signals are incorporated into the BCI design. More specifically,
improvements of 13% and 7% were observed in system sensitivity
and specificity, respectively. These results suggest that physiologi-
cal signals can be used to enhance the performance of NIRS-based
BCIs and thus provide a more reliable communicative channel
for individuals with severe motor impairments.

I. INTRODUCTION

Individuals with severe motor disabilities necessitate the
use of access technologies, or human-machine interfaces, to
translate user intentions into useful control signals. Eye gaze
[1], head [2], and tongue control devices [3] are a few exam-
ples of such technologies. However, these require some degree
of voluntary motor control and are therefore unsuitable for
locked-in individuals who lack any functional motor or speech
skills. These individuals often have full cognitive awareness
but are unable to make their non-functional bodies respond
appropriately to their intentions. Brain-computer interfaces
(BCI) have been shown to be reliable access solutions for
such individuals [4].

Near-infrared spectroscopy (NIRS) has recently been in-
vestigated as a non-invasive method of measuring cortical
hemodynamic responses for BCI design [5]. NIRS operates
by determining the properties of a substance by transmit-
ting near-infrared electromagnetic radiation (650 nm - 950
nm wavelengths) through the substance and comparing the
intensities of the returning and incident light. BCIs based on
NIRS technologies image the brain to harness hemodynamic
responses resultant from mental activity. More specifically,
certain mental activities (e.g., music imagery) cause changes
in regional concentrations of oxygenated and deoxygenated
hemoglobin due to an increase in blood flow and metabolic de-
mands, hence altering the optical properties of the brain. Since
the amount of light absorbed versus the fraction reflected is
mostly dependent on the concentrations of such hemoglobins,
hemodynamic responses can be assessed via NIRS [6]. This

response has been shown to have a latency of 5-8 seconds post
voluntary activation and can be measured from the prefrontal
cortex [7].

Previous studies have shown that music imagery can elicit
[8] and enhance [9] the intense emotional responses required
to activate the prefrontal cortex [7]. Furthermore, prefrontal
hemodynamic responses to imagined singing of subject-
selected music have been observed by functional magnetic
resonance [10]. Similarly, physiological responses such as
changes to electrodermal activity and respiration rate have
been shown to be elicited by cognitive tasks similar to those
used by NIRS-BCI systems (i.e., music imagery) [11], [12]. As
a consequence, the purpose of this study was to investigate the
potential of incorporating physiological responses to improve
NIRS-based BCI performance.

Four non-invasively acquired physiological signals were
explored, namely, electrodermal activity, skin temperature,
respiration rate, and heart rate. Physiological responses were
collected in combination with hemodynamic responses as
participants performed a music imagery task. The developed
system made use of hidden Markov models to distinguish
between baseline (i.e., rest) and music imagery events; such
discrimination was used to develop BCI control signals. Ex-
periments with six participants showed that improved BCI per-
formance was attained once physiological and hemodynamic
responses were combined.

The remainder of this paper is organized as follows. Sec-
tion II provides a description of the proposed system. Sec-
tion III presents the study protocol and the obtained exper-
imental results. Discussion and conclusions are presented in
Sections IV and V, respectively.

II. SYSTEM DESCRIPTION

Figure 1 illustrates the overall design of the proposed
system. Hemodynamic responses (HemoR) in the prefrontal
cortex were collected simultaneously with four physiological
modalities, namely electrodermal activity (EDA), skin temper-
ature (ST), respiration rate (RR), and heart rate (HR), while
the participant sat quietly at rest (baseline) and while the
participant performed a task which consisted of alternating
between rest and music imagery (test). Baseline data was
used to train user-specific reference hidden Marokov models
(HMM) representative of the normative physiological and
hemodynamic responses of the participant at rest. Test data
was scored against the reference HMMs via a log-likelihood
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Fig. 1. Study overview – Cortical hemodynamic responses (HemoR) were collected using NIRS technology with a custom-designed headband while
electrodermal activity (EDA), skin temperature (ST), heart rate (HR), and respiration rate (RR) were collected by a multi-modality encoder. Responses were
collected from participants while they sat at rest (used for HMM training) and while they performed rest-plus-music imagery tasks (used for system testing).
BCI control signals were generated based on the detected music imagery events.

measure which was then used for automatic music imagery
detection; detection of such events could be used as control
signals for BCI usage. A detailed description of the system is
provided in the subsections to follow.

A. Measurement of Hemodynamic Responses

Near-infrared spectroscopy was used to measure the hemo-
dynamic response in the frontopolar cortex, the superior por-
tion of the orbitofrontal cortex, and the medial sections of the
dorsolateral prefrontal cortex via the Imagent Function Brain
Imaging System from ISS Inc. Sixteen light sources (eight at
690 nm and eight at 830 nm) delivered 110-MHz modulated
light to the forehead which was returned to two photomul-
tiplier tube detectors at a demodulated cross-correlation fre-
quency of 5kHz. The light sources were multiplexed to avoid
cross-signal contamination resulting in an effective sampling
rate of 31.25 Hz. A fast Fourier transform was applied to the
collected signals and DC data components (relative amplitude
at 0 Hz) were output.

B. Measurement of Physiological Responses

The four physiological signals were recorded simultane-
ously using the ProComp Infiniti multi-modality encoder from
Thought Technology at a sampling frequency of 256 Hz.
All sensors were placed on the participant’s non-dominant
hand. Electrodermal activity was measured from two 10 mm
diameter Ag-AgCl surface electrodes attached with adhesive
collars on the medial phalanges of the index and middle
fingers. Medial phalanges were chosen as they represent a
region of the skin containing a high density of sweat glands. A
constant 0.5 V was applied between the two electrodes. Skin
temperature was measured using a thermal sensor on the distal
phalange of the fifth finger. Heart rate was computed from the
interbeat intervals of the blood volume pressure waveform ob-
tained with a photoplethysmograph sensor. Lastly, respiration
rate was measured by positioning a piezoelectric belt around
the thoracic area; stretching due to expansion and contraction
of the chest were converted into voltages.

C. Signal Pre-Processing
Physiological signal pre-processing consisted of downsam-

pling to 31.25 Hz and noise reduction via fifth order lowpass
Butterworth filters with cutoff frequencies at 0.2, 0.1, 1.2,
and 0.3 Hz for EDA, ST, RR, and HR signals, respectively.
NIRS signals, in turn, were denoised using wavelet-based
filters as suggested by the work described in [6]. Filtering was
performed via a 12-level decomposition using the Daubechies-
12 wavelet and consisted of the reconstruction of the approx-
imation wavelet coefficients with either the last three, four, or
five detail coefficients (henceforth termed 3-, 4-, or 5-detail
filters, respectively).

D. Hidden Markov Models
Hidden Markov models (HMM) have been commonly used

for applications such as speech recognition and are not detailed
here; the reader is referred to [13] for a full discussion. In this
study, HMMs were used to model the normative hemodynamic
and physiological responses of an individual at rest. During
music imagery tasks, it is expected that the investigated NIRS
and physiological signals deviate from the observed baseline
responses and such deviations can be used for BCI control.
To explore the benefits of harnessing physiological responses,
HMMs were trained on NIRS signals alone and on NIRS
combined with physiological signals.

To allow for a user-centred BCI design [14], different HMM
parameters, such as number of states (Q) and number of full-
covariance Gaussian components (M) in the Gaussian mixture
output distributions, were explored on a per-participant ba-
sis. Model parameters, including state transition and initial
state probabilities and output distribution parameters, were
computed via the commonly used expectation-maximization
algorithm summarized in [13]. Pilot experiments suggested
that the following “Q−M” HMM configurations provided a
balance between system performance and model complexity:
Q = 4, M = 1,2, or 3, or Q = 2,M = 1, or 2.

E. Automatic Music Imagery Detection
By training HMMs on baseline data, a log-likelihood mea-

sure could be used for automatic music imagery detection.



Fig. 2. Log-likelihood temporal series computed from test data consisting
of alternating rest (unshaded) and imagery (shaded) periods.

More specifically, higher log-likelihood values were indicative
that the observed responses (either hemodynamic alone or
hemodynamic combined with physiological) were similar to
those observed during rest. Lower log-likelihood values, in
turn, suggested that the observed responses deviated from
rest and could indicate controlled mental activity. Figure 2
depicts a representative log-likelihood temporal series with
the expected increases during rest (unshaded regions) and
decreases during music imagery (shaded regions).

Due to the nature of the log-likelihood function, complex
machine learning algorithms were not necessary for music
imagery detection. In lieu, simple changes in the sign of the
slope (from positive to negative) of the log-likelihood function
were used for imagery detection. To minimize the effects of
mind wandering, music imagery events were detected only if a
decrease in log-likelihood was sustained for a minimum of 5
seconds. Log-likelihood values were computed for different
window lengths ranging from l = 1− 15 seconds and for
different window overlaps ranging from s = 0.3−1 seconds;
normalization was performed based on the investigated win-
dow length. The use of different window sizes and overlap
was motivated by the differences in reaction times among
participants which may have been due to factors such as
mental alertness, innate reaction times, and familiarity with
the procedure.

III. EXPERIMENTAL RESULTS

This section describes the data collection protocol and
performance metrics used, as well as reports the obtained
experimental results.

A. Data Collection

Six able-bodied participants (four female, two male) with a
mean age of 28.5 ± 11.6 years were recruited. Ethics approval
for this study was obtained from the affiliated institutes and
participants freely consented to participate. The study con-
sisted of four sessions completed on two separate days. Two
sessions were baseline trials, each 130 seconds in duration,

wherein the participant was sitting at rest in a neutral state
of mind and was instructed to focus on their breathing. The
remaining two sessions were test trials, each 220 seconds
in duration, wherein the participant alternated between 20
second rest and music imagery intervals (see Fig. 2); interval
transitions were cued by a light tap on the arm. Each test
trial started and ended with rest intervals and each participant
performed music imagery on self-selected songs which elicited
emotions of the same valency (i.e., ”happy” or ”sad”).

B. Performance Metrics

Two performance metrics were used to gauge system per-
formance, sensitivity and specificity. Sensitivity measured how
accurately expected imagery events were detected, whereas
specificity measured how accurately expected rest intervals
were identified. The measures were computed as

Sensitivity =
TP

TP+FN
×100%, (1)

Specificity =
TN

TN+FP
×100%, (2)

where TP and TN referred to true positives and true negatives,
respectively; FP and FN referred to false positives (erroneous
BCI activation) and false negatives (undetected music im-
agery).

For the NIRS-trained HMMs, an expected imagery interval
(true positive) was detected if a sustained slope decrease in
the log-likelihood series occurred within the first 13 seconds
of an imagery interval. This grace period compensated for
the latencies in the hemodynamics-driven signal, which can
be upwards of eight seconds [5], and the participant’s re-
action time to begin imagery upon being cued, which was
found to be around five seconds in pilot experiments. For
the physiologically enhanced NIRS-trained HMMs, this grace
period was shortened to 7.5 seconds as physiological responses
were found in pilot experiments to posses shorter latencies
(on average 3.5 ± 0.9 seconds) relative to hemodynamic
responses. If no activation was detected within this window,
an incorrectly identified rest interval was classified and a
false negative was observed. Activations detected in expected
rest intervals were deemed false positives while expected rest
intervals with no activations were classified as true negatives.

C. Quantitative Results

Table I reports per-participant sensitivity (labeled “sens”)
and specificity (labeled “spec”) values obtained with the
NIRS-driven and NIRS-plus-physiological HMM-based BCI
paradigms. To allow for a user-centred BCI design [14],
optimal combinations of filter detail d, HMM parameters (Q
and M), and log-likelihood window l and overlap s sizes
were obtained on a per-participant basis. As can be seen,
system sensitivity is significantly increased once physiological
responses are incorporated into the BCI design (p < 0.1, t-test).
Specificity is also improved, although not as significantly
(p < 0.3). Overall, average increases of approximately 13%
and 7% were observed for sensitivity and specificity measures,
respectively.



TABLE I
PER-PARTICIPANT COMPARISON OF THE PERFORMANCES OBTAINED
WHEN USING HMMS TRAINED ON ONLY NIRS SIGNALS AND THOSE

TRAINED WITH NIRS-PLUS-PHYSIOLOGICAL SIGNALS. AVERAGE AND
STANDARD DEVIATION (“ST. DEV.”) VALUES, COMPUTED OVER THE SIX

PARTICIPANTS, ARE ALSO REPORTED.

NIRS Only Physio & NIRS

Subject Sens Spec Sens Spec
1 80.0 92.0 83.3 100.0
2 100.0 58.0 100.0 91.7
3 80.0 58.0 77.5 66.7
4 50.0 100.0 80.0 91.7
5 80.0 83.0 100.0 50.0
6 90.0 75.0 100.0 100.0

mean 80.0 77.7 90.1 83.3
st. dev. 16.7 17.4 11.0 20.4

IV. DISCUSSION

To customize the physiologically enhanced NIRS-based BCI
for each participant, a calibration session with known imagery
and rest intervals would be required to determine optimal log-
likelihood and HMM parameters. This optimization process
could be performed with minimal intervention by an outside
party, similar to the calibration session required by exist-
ing commercially-available speech recognizers. Furthermore,
since only normative baseline data was required for HMM
training, as opposed to baseline and imagery data required by
competing BCIs, the calibration session could be relatively
short on the order of tens of seconds.

The simplicity of the proposed system lies in the nature
of the cognitive task employed and its ability to elicit both
hemodynamic and physiological responses. Traditional BCIs
use only a single modality and therefore may limit the par-
ticipant’s ability to control the interface. By harnessing the
physiological responses that simultaneously occur with the
hemodynamic responses, a more comprehensive view of the
participant’s response to the cognitive task was observed and
thus the output control signal was more representative of the
participant’s intent.

Although the delay in detecting activations is not ideal
for online activities, e-book reading or television remote
controlling may be suitable applications. Further studies may
investigate the use of different combinations of physiological
signals which would be more appropriate for individuals
with a disability (e.g., individuals with spinal cord injury
who may not benefit from using the electrodermal response
[11]). Furthermore, the hemodynamic and/or physiological
signals may be responsive to environmental noise and therefore
may require compensation strategies to differentiate between
voluntary and involuntary responses.

V. CONCLUSIONS

This study proposed a physiologically enhanced NIRS-
based BCI system. Subject-specific hidden Markov models
trained on NIRS-driven hemodynamics responses and four
independent physiological responses, namely, electrodermal

activity, skin temperature, respiration rate, and heart rate,
were used to differentiate between two cognitive states: rest
and music imagery. Experimental results with NIRS-trained
HMMs showed sensitivity and specificity values of (80.0 ±
16.7)% and (77.7 ± 17.4)%, respectively. By including the
physiological responses, sensitivity and specificity increased
to (90.1 ± 11.0)% and (83.3 ± 20.4)%, respectively, resulting
in performance gains of 13% and 7%. These promising
results motivate further investigations of using physiological
responses to improve the performance of traditional BCI
systems, in particular for individuals in the target population.
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