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ABSTRACT

In this paper, the effects of auditory distractions on the per-
formance of brain-computer interfaces (BCI) based on near-
infrared spectroscopy (NIRS) are investigated. Experiments
show that NIRS-BCI specificity decreases by an average 19%
when operated in the presence of continuous background
noise (relative to operation in silence) and by 13% when
operated in the presence of startle noises. To improve BCI
performance in noisy environments, a simple yet effective
startle noise compensation strategy is proposed. Acoustic
environmental conditions are tracked in realtime and false
BCI activations that occur within seconds of detected startle
noises are suppressed. Experiments show NIRS-BCI systems
equipped with the proposed compensation system attain-
ing performances in noisy conditions comparable to those
attained in silent conditions.

Index Terms— Brain-computer interface, near-infrared
spectroscopy, hidden Markov model, auditory distraction.

1. INTRODUCTION

Brain-computer interfaces (BCI) have emerged as promising
access solutions for individuals with severe and multiple dis-
abilities. BCIs can harness electric, magnetic, or metabolic
brain signals to allow individuals to interact with their sur-
rounding environment and to control external devices such
as a computer, a wheelchair, or a neuroprosthesis. Recently,
near-infrared spectroscopy (NIRS) has been used as a reliable
method of non-invasively measuring cortical hemodynamic
responses for BCI design [1].

NIRS is an analysis technique used to map the hemody-
namic response in the brain that occurs as a result of men-
tal activation. Near-infrared (650 nm – 950 nm wavelengths)
electromagnetic radiation is directed incident into the scalp
allowing the majority of the radiation (light) to pass into the
cortex to a depth of 1-3 cm with little interference [1]. When
voluntary brain activation occurs, metabolic demands and in-
creased blood flow result in changes to the regional concen-
trations of oxygenated and deoxygenated hemoglobin, thus
altering the optical properties of the brain [2]. The fraction of

light absorbed versus the fraction reflected is mostly depen-
dent on the concentrations of such hemoglobins, as they are
the two primary absorbers of near-infrared light in the brain
tissue. By measuring the intensity of the reflected light, pre-
vious research has used NIRS technologies to assess hemo-
dynamic responses in the motor cortex during motor imagery
activity [1] and in the prefrontal cortex during music imagery
[3] or mental calculation tasks [4].

To improve NIRS-based BCI performance, significant ef-
forts have been placed on the detection and removal of phys-
iological noise (e.g., motion artifacts, respiration and heart
rate) from the recorded spectroscopy signals [2]. Little re-
search, however, has been conducted to investigate the effects
of auditory distractions on NIRS-BCI performance. Previous
studies, however, have suggested that the prefrontal cortex is
involved in the processing of auditory information, particu-
larly of distracting auditory stimuli [5, 6]. As a consequence,
it is expected that the performance of NIRS-BCI technologies
based on prefrontal cortex activation (e.g., via music imagery)
will be compromised in noisy environments. In order to de-
velop robust technologies that can be taken beyond experi-
mental scenarios and into a user’s typical surroundings, the
effect of such environmental factors must be ascertained.

In this paper, the first steps towards automated compen-
sation of environmental noise artifacts on NIRS-BCI perfor-
mance are taken. The developed BCI makes use of hidden
Markov models (HMM) to characterize NIRS signals of in-
dividuals at rest. Control signals are developed based on
automatic detection of music imagery events via an HMM
log-likelihood measure. Experiments show that BCI perfor-
mance decreases significantly under constant background and
startle noise (e.g., door slamming, phone ringing) conditions.
A simple yet effective startle noise compensation strategy
is proposed and used to suppress erroneous BCI activations
caused by involuntary cortical hemodynamic responses. Per-
formance levels close to those attained in silent conditions
are attained once noise compensation is in place.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the NIRS-BCI, Section 3 presents the exper-
imental results and conclusions are drawn in Section 4.
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Fig. 1. Positioning of source pairs (circles) and detectors
(shaded circles). Each source pair represents one λ =690 nm
source and one λ =830 nm source.

2. NIRS-BASED BRAIN-COMPUTER INTERFACE

In this section, the multiple components used in the develop-
ment of the NIRS-BCI are described.

2.1. NIRS Signal Measurement

Hemodynamic responses were recorded using an Imagent
Function Brain Imaging System from ISS Inc. Two photo-
multiplier tube detectors were employed along with sixteen
light sources — eight at 690 nm and eight at 830 nm. The
sources delivered 110 MHz-modulated light to the forehead
via 400 µm-diameter optical fibres, and the detectors received
the returning light via 3 mm-diameter optical fibres. Light re-
turned to the detectors was demodulated at a cross-correlation
frequency (CCF) of 5 kHz. To avoid cross-signal contamina-
tion, the light sources were cyclically switched such that no
two sources were on simultaneously. The effective sampling
rate was 31.25 Hz and three output data components were
collected: AC (relative amplitude at the CCF), DC (relative
amplitude at 0 Hz), and phase.

Positioning of four source pairs around one detector on
each side of the participant’s forehead allowed both the right
and left prefrontal cortices to be probed, as depicted by Fig. 1.
Areas probed included the frontopolar cortex, the superior
portion of the orbitofrontal cortex, and medial sections of the
dorsolateral prefrontal cortex. Emitters in position 3 on each
side were located roughly at the left and right prefrontal cor-
tices (FP1 and FP2 in the 10-20 system). On each side, the
four source pairs were positioned 2.12 cm away from the de-
tector, a distance that has been shown to suffice for cortical
hemodynamic probing [7].

2.2. Pre-Processing and Feature Extraction

The raw signals (AC and DC) were wavelet-denoised to sup-
press physiological noise due, primarily, to cardiac signals
(0.5–2 Hz), respiration (0.2–0.4 Hz) and the Mayer wave
(approximately 0.1 Hz) [2]. Here, three wavelet (12-level
Daubechie) filters are explored and the filtered signals com-

prise of the reconstruction of the approximation wavelet
coefficients and either the last three, four or five detail coef-
ficients. AC and DC signals are denoted as xλ

p,i(γ, d), where
the subscript i indexes the source position (i = 1, . . . 4),
subscript p indicates the left or right hemisphere of the fore-
head by L or R, respectively, the superscript λ indicates the
wavelength (λ =690, 830 nm), the signal type (AC or DC)
is indicated by the parameter γ and parameter d indicates the
‘detail’ of the filtered signal (d = 3, 4, 5).

Additionally, estimated changes in oxygenated (HbO2)
and deoxygenated (HHb) hemoglobin concentrations were
computed using the modified Beer-Lambert law [1] and the
raw AC and DC signals. The notation ch

p,i(d) is used to denote
oxygenated (h = HbO2) or deoxygenated hemoglobin (h =
HHb) concentrations, and parameters p=L,R, i = 1, . . . 4,
and d = 3,4,5 are used as before. The like-wavelength raw sig-
nals (AC and DC) and like-chromophore concentration sig-
nals were averaged over the four measurement positions on
each side (see Fig. 1) and served as feature vectors to train
user-dependent hidden Markov models.

2.3. User-Centred HMM BCI

Figure 2 depicts the block diagram of the proposed HMM-
based BCI system. Hidden Markov models with Gaussian
mixture model output probability distributions are used to
model normative hemodynamic responses of individuals at
rest (termed “baseline”). Deviations from such models are
indicative of music imagery events which, in turn, are used
for BCI control; deviations are measured via a normalized
log-likelihood measure computed with the forward-backward
procedure described in [8]. Startle noise detection is em-
ployed to improve performance in noisy conditions.

During training, hidden Markov model parameters such
as state transition probabilities, initial state probabilities,
and output distribution parameters are computed using the
expectation-maximization algorithm summarized in [8]. To
allow for a user-centred approach, different HMM config-
urations are explored per subject. Pilot experiments were
conducted to investigate reliable values for the number of
HMM states Q and the number of Gaussian mixture compo-
nents M per state; full covariance Gaussian components were
used. Three parameter combinations were shown to strike a
good balance between complexity and performance, namely:
Q = 4 and M = 1 or Q = 2 and M = 1 or 2.

For each participant, HMMs were trained for different
combinations of AC, DC, or concentration features using
the training baseline signals. More specifically, the four-
dimensional feature vectors include:

~uDC,d = [x̄690
L (DC, d), x̄830

L (DC, d), x̄690
R (DC, d), x̄830

R (DC, d)],
(1)

~uAC,d = [x̄690
L (AC, d), x̄830

L (AC, d), x̄690
R (AC, d), x̄830

R (AC, d)], (2)

~uconc,d = [c̄Hb
L (d), c̄HbO

L (d), c̄Hb
R (d), c̄HbO

R (d)], (3)

where d indexes 3-, 4-, or 5-detail wavelet filters.
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Fig. 2. Block diagram of the proposed NIRS-BCI with startle
compensation achieved via environment sniffing.

During testing, log-likelihood values are computed for
consecutive and overlapping frames of the imagery test data.
Here, frame lengths of l = 1, 3, 5, 7, 10, and 15 seconds are
investigated with 0.5–second overlap. Normalization is per-
formed based on the length of the window. Window lengths
of different sizes are investigated as reaction times may dif-
fer between subjects due to various external factors such as
mental alertness, reaction time, and familiarity with the pro-
cedure. Higher log-likelihood values suggest hemodynamic
responses akin to those observed during rest. Lower log-
likelihood values, in turn, indicate responses different from
rest, i.e, music imagery events.

For music imagery detection, a simple classification ap-
proach is employed; more specifically, changes from positive
to negative slope in the log likelihood function are used. In
order to remove possible artifacts due to e.g., head movement,
music imagery events were only detected if a decrease in the
log likelihood function persisted for at least four seconds. Ad-
ditionally, in order to compensate for false activations due to
involuntary hemodynamic responses resultant from auditory
distractions, a startle noise detection algorithm is employed
based on the “environment sniffing” paradigm [9]. Once star-
tle noises are detected, false BCI activations are suppressed.
Such compensation strategy will be shown to improve BCI
performance under noisy conditions (see Section 3.3).

3. EXPERIMENTAL RESULTS

In this section, the collected data is described and experimen-
tal results are reported.

3.1. Data Collection

Twelve subjects performed each a total of 8 trials over two
separate days. Half the trials were performed in silence and
the other half with auditory distractions. Of the trials per-
formed in silence, two consisted of alternating periods of mu-
sic imagery and rest (termed “imagery” trials and used as test
signals), and two of the individual at rest with no music im-
agery (termed “baseline” trials and used as training signals).
Of the trials performed under noisy conditions, half consisted
of imagery trials with continuous babble noise played in the
background and the other half of imagery trials with startle
noises (sneeze, dog barking, glass breaking, door slamming,
and a cough) played randomly in the background. Before
each session began, each participant chose at least two songs
of the same emotional valence (i.e. ‘happy’ or ‘sad’) which
he/she felt would elicit an intense emotional response; the se-
lected songs were then used for the music imagery portions
of the trials.

The 220-second imagery trials each consisted of eleven
20-second intervals alternating between rest (six intervals)
and music imagery (five intervals), for both the silence and
noisy conditions. For the rest intervals, participants were in-
structed to clear their minds as much as possible, and to fo-
cus on their breathing. For the imagery intervals, instructions
were to silently sing the pre-selected songs to themselves in
their head. An experimenter cued the subjects to transition
from rest to imagery and vice versa with a light tap on the
arm. The two baseline trials consisted of 120-second rest in-
tervals without music imagery.

3.2. Performance Metrics

BCI sensitivity and specificity are used as performance met-
rics and are given by

Sensitivity =
TP

TP+FN
× 100%, (4)

Specificity =
TN

TN+FP
× 100%, (5)

where TP and TN refer to true positives and negatives, re-
spectively; FP and FN refer to false positives (erroneous BCI
activation) and negatives (undetected music imagery).

3.3. Experimental Results

To allow for a user-centred design, optimal combinations
of filter detail d, HMM parameters (Q and M ), and log-
likelihood window sizes l are obtained on a per-participant
basis. Under silent conditions, the proposed HMM-based
BCI attained an average sensitivity of 0.83, 0.85, and 0.87 for
AC, DC, and concentration data, respectively; standard devi-
ations (std) were 0.12, 0.13, and 0.14. To quantify the effects
of false positives caused by auditory distractions, Table 1
further reports the specificity values obtained for each of the



Table 1. Per-participant specificity values obtained with the HMM-based NIRS-BCI under silent, noisy, and startle-
compensated conditions for AC, DC, and concentration data.

Silence Background Startle Startle Compensation
subject AC DC Conc. AC DC Conc. AC DC Conc. AC DC Conc.

1 1 0.92 1 0.92 0.75 0.73 0.92 0.92 0.92 0.92 0.92 0.92
2 0.67 0.58 1 0.58 0.67 0.50 0.58 0.5 0.5 0.67 0.67 0.67
3 0.75 0.83 0.92 0.58 0.58 0.92 0.75 0.75 0.75 0.75 0.75 0.75
4 0.92 1 0.7 0.83 0.92 0.86 0.92 0.91 0.91 1 0.91 0.91
5 0.75 0.75 0.83 0.67 0.50 0.50 0.6 0.58 0.58 0.6 0.58 0.58
6 0.83 0.58 0.83 0.67 0.67 0.78 0.83 0.57 0.83 0.83 0.83 0.83
7 0.92 0.67 0.86 0.67 0.42 1.00 0.92 0.75 0.75 1 0.75 1
8 1 0.92 0.92 0.58 0.67 0.75 0.75 0.75 0.75 0.75 0.75 0.75
9 0.67 1 0.64 0.50 0.50 0.75 0.67 0.5 0.67 0.83 0.83 0.83

10 1 0.92 0.75 0.67 0.67 0.92 0.83 0.58 0.58 0.83 0.58 0.58
11 0.92 0.83 1 0.58 0.50 0.83 1 0.67 0.67 1 1 1
12 0.83 0.75 1 0.83 0.42 1.00 0.83 0.83 0.83 0.92 0.83 0.83

mean 0.86 0.81 0.87 0.67 0.60 0.79 0.80 0.69 0.73 0.84 0.78 0.80
std 0.12 0.15 0.13 0.13 0.15 0.17 0.13 0.15 0.13 0.13 0.13 0.14

twelve participants under silent and noisy (background and
startle) conditions. For brevity, sensitivity values for noise
conditions are not reported as they were not significantly
affected. As observed, auditory distractions significantly de-
grade BCI performance. Raw AC and DC data are more
severely affected by constant background noise relative to
startle noises; the converse is true for concentration data.
Once startle compensation is in place, performance values
close to those obtained in silence are attained.

4. CONCLUSIONS

The effects of auditory distractions on NIRS-BCI perfor-
mance are explored. Experimental results suggest that con-
stant background noise degrades average BCI performance
by approximately 19% whereas startle noises degrade per-
formance by an average 13%. Once startle compensation
is in place, performance is only degraded by approximately
4.5%. Ongoing investigations include the development of
compensation strategies for constant background noise.
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