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Abstract 
In this paper, we compare and combine different ap-

proaches for instrumentally predicting the perceived quality of 
Text-to-Speech systems. First, a log-likelihood is determined 
by comparing features extracted from the synthesized speech 
signal with features trained on natural speech. Second, pa-
rameters are extracted which capture quality-relevant degrada-
tions of the synthesized speech signal. Both approaches are 
combined and evaluated on three auditory test databases. The 
results show that auditory quality judgments can in many 
cases be predicted with a sufficiently high accuracy and reli-
ability, but that there are considerable differences, mainly 
between male and female speech samples. 

Index Terms: speech synthesis, quality prediction, Qual-
ity of Experience (QoE) 

1. Introduction 
Text-To-Speech (TTS) systems have reached a level of matur-
ity which allows them to be used in every-day spoken dia-
logue applications where flexibility and unlimited vocabulary 
are necessary, such as email and SMS readers, traffic informa-
tion systems, or smart-home assistants. Providers of such sys-
tems have to select one of a number of available TTS systems 
for inclusion in their service, or to justify whether an update of 
their voice has really led to improvements. In parallel, devel-
opers of TTS systems frequently have to test their system 
during the development cycle, in order to optimize algorithms 
and corpora. Thus, the evaluation of synthesized speech is still 
a frequent and important task. 

So far, evaluators of TTS systems rely on auditory tests 
with human participants. Depending on which aspect of the 
system is under consideration, different types of test are rec-
ommended: articulation and intelligibility tests investigate 
whether the synthesized speech signal is able to carry informa-
tion on a segmental or supra-segmental level [1]; comprehen-
sion tests investigate whether the content provided via a syn-
thesized speech signal can be discerned [2]; and overall qual-
ity tests investigate global aspects of the synthesized speech 
signal in an application scenario, such as naturalness, pronun-
ciation, intonation, speech rate, voice pleasantness, etc. [3]. 
Although doubts have been casted on the test protocol [4][5], 
the latter method is by far the most frequently applied one 
when it comes to judging the overall quality of synthesized 
speech to be integrated in spoken dialogue services; as a con-
sequence, it is recommended by International Telecommuni-
cation Union for evaluating telephone-based services  [3]. 
Common to all these methods is that they rely on perceiving 
and judging listeners, which makes them time-consuming and 
expensive. 

In order to increase efficiency, several proposals have 
been made in the last two decades to estimate the perceived 
quality of synthesized speech signals in an instrumental 
(sometimes called “objective”) way. For concatenative speech 
synthesis, one idea is to collect natural speech samples from 
the same speaker which is used for the synthesis inventory; a 
perceptually weighted distance between the synthesized and 
the naturally-produced samples of this speaker can then be 
used as an index of the quality degradation [6]. Whereas this 
approach is similar to legacy pattern-comparison approaches 
used for predicting the quality of transmitted speech [7][8], it 
is only rarely applicable, as the inventory speaker is usually 
not available to the evaluator. 

Mariniak [9] proposed to extract perception-based features 
from the synthesized speech material and to compare them to 
features extracted from (other) natural speakers; the distance 
between both could be an indication of the speech quality. To 
our knowledge, this approach was never implemented by Ma-
riniak, but it has recently been taken up in [10], using Mel-
Frequency Cepstral Coefficients (MFCCs) as features and a 
Hidden Markov Model (HMM) with Gaussian Mixture densi-
ties for a temporal-spectral comparison of features. It led to 
very promising results on an initial test database, with correla-
tions between 0.54 and 0.81 for different quality dimensions 
collected in the auditory test. 

Another approach is to extract parameters from the speech 
signal which are related to degradations typically expected for 
TTS. Also this approach is motivated by quality prediction-
models for transmitted natural speech, namely the single-
ended model given in ITU-T Rec. P.563 [11]. This model first 
generates a “clean” speech reference from the degraded one, 
then calculates a perceptually-motivated distance between the 
degraded and the clean speech signal, further extracts a large 
number of parameters related to typical transmission channel 
degradations, and combines the perceptually weighted dis-
tance and the parameters to an estimation of overall speech 
quality. Applying this model to synthesized speech [12], the 
results were not as promising as those obtained with the 
HMM-based approach, but the parameters have not yet been 
optimized for synthesized speech. A comparison of different 
such single-ended speech quality models described in [13] 
shows that the P.563 model might not be the most appropriate 
one. In addition, considerable differences have been detected 
between the performances for male vs. female voices [14]. 

Our aim is to compare and to combine the feature-
comparison and the parametric approaches in order to increase 
the prediction performance and robustness. For this purpose, 
we used the optimized HMM-based feature comparison and 
extracted a number of parameters which correlate with audi-
tory test results, see Section 2. We further collected three 
auditory databases in order to broaden the basis for a compari-
son, see Section 3. Applying the approaches to these data-



bases, we analyze the performance and robustness of the pre-
dictions in Section 4. Section 5 summarizes the main results 
and identifies the next steps for further research. 

2. Modeling approach 
We compare and combine an HMM-based comparison of 
features with a parametric description of the speech signal in 
order to derive an estimate of the perceived speech quality. 
The overall structure is given in Figure 1, and the individual 
parts are described in the following subsections. 

Figure 1: Modeling approach. Solid lines refer to the 
evaluation phase, dashed lines to the training phase. 

2.1. HMM-based feature comparison 

The HMM-based feature comparison mainly follows the one 
described in [10]. In order to obtain comparable characteristics 
for the feature comparison, a pre-processing step is carried out 
both during the training phase (for the natural speech) and 
during the evaluation phase (for the TTS samples). It consists 
of filtering with a standard telephone bandpass (300-3400 Hz) 
given in ITU-T Rec. G.712, downsampling to 8 kHz, and level 
normalization to -26 dB below the overload point of the digital 
system, using the active speech-level meter defined in ITU-T 
Rec. P.56. Moreover, since we are only interested in the qual-
ity of the TTS system, only active speech segments are ana-
lyzed, using a simple energy thresholding Voice Activity De-
tection (VAD) algorithm to remove silence intervals longer 
than 75 milliseconds; this duration was empirically chosen as 
to avoid artificial discontinuities introduced by possible VAD 
errors. 

12th order MFCCs are then computed both during the 
training and the evaluation phase using 25 ms windows and 10 
ms time shifts, including the 0th order coefficient which is 
used as a log-energy measure. In order to quantify signal-
energy dynamics, the 0th delta-cepstral coefficient is added 
which has been shown useful for temporal discontinuity detec-
tion. Finally, the fundamental frequency F0 is computed with 
the pitch tracking algorithm described in [15]. The average F0 
over all voiced speech frames is used to identify talker gender, 
using F0 = 160 Hz as a threshold to distinguish between male 
and female voices. 

Since we consider the temporal dynamics to be important 
for perceived speech quality, we use HMMs trained with natu-
ral reference features to quantify differences between natu-

rally-produced and synthesized speech; HMM transitions 
should be able to adequately capture the dynamics expressed 
by the sequence of feature vectors. First experiments show 
that there is a considerable difference in the features of male 
and female speech, so we decided to use two reference mod-
els, one for male and one for female speech data. HMMs with 
8 states are used, the output distribution of each state consist-
ing of a Gaussian mixture density with 16 diagonal-covariance 
Gaussian components. Model parameters, such as state transi-
tion probabilities, initial state probabilities, and output distri-
bution parameters, are computed using the expectation-
maximization algorithm [16]. The perceptual similarity is then 
expressed as a Log-Likelihood (LL) value computed using the 
so-called forward-backward procedure described in [16]. 
Normalization is performed based on the number of active-
speech frames in the signal under test; the normalized log-
likelihood is referred to as LL in Fig. 1. 

2.2. Parameter extraction 

As a second basis for the quality estimation, we extracted 
parameters from the synthesized speech signal which might be 
related to the degradations coming with the synthesis process. 
A first set of parameters was taken from the model described 
in ITU-T Rec. P.563 [11]. These parameters capture character-
istics such as noise, temporal clippings, and robotization ef-
fects (voice with metallic sounds). A total of 44 characteristic 
signal parameters are calculated. Based on a restricted set of 
eight key parameters, one of six major “distortion classes” is 
detected, such as a high level of background noise, signal 
interruptions, signal-correlated noise, speech robotization, and 
unnatural male or female speech. We designate the detected 
“distortion class” as well as the underlying parameters as the 
P.563 set of parameters in the following analysis.  

Secondly, we calculated a large set of 1495 general pa-
rameters  [17] which provide a broad variety of information 
about vocal expression patterns that can be useful when classi-
fying speech metadata such as age, gender and emotion. These 
parameters are related to signal duration, formants, intensity, 
loudness, cepstrum, pitch, spectrum, and zero crossing rates. 
We designate this set as “general parameters” in the following 
analysis. 

In order to extract the relevant information for the given 
task from this large set of parameters, we employed a sequen-
tial feature selection (SFS) algorithm followed by Principal 
Components Analysis (PCA). The SFS used a correlation-
based cost function where features with |R|>0.25 were kept. 
PCA was subsequently used on this subset to come up with a 
small set of relevant factors which are used for the quality 
estimation function. 

2.3. Linear combination 

Finally, a quality estimate is calculated from either LL , the 
factors of the principle component analysis of the extracted 
parameters, or both. Since the available auditory test data is 
quite limited, we opted for a simple linear regression model 
which was calculated by the LL  value and the values given 
by the linear regression over the PCA factors and estimating 
the naturalness or overall quality judgment of the particular 
test. A manual investigation of the shape of the relationship 
between input variables and auditory judgments did not pro-
vide enough evidence for justifying more complicated (e.g. 
non-linear) relationships. 
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3. Test databases 
In order to test our approach, we used data from three auditory 
tests which have been carried out with different synthesis sys-
tems and stimuli, different test participants, and at different 
places in Germany, for the German language. In the following 
sub-sections, we briefly describe the experimental set-ups and 
procedures. 

3.1. Test 1 

Test 1 has been carried out at the Institute for Phonetics and 
Digital Speech Processing at Christian-Albrechts-University 
of Kiel, Germany, see  [18] for details. It used speech material 
from six off-the-shelf TTS systems: 3 commercial ones 
(AT&T, MBROLA-based Proser, and Cepstral) and three 
from German academic institutions (TU Dresden, TU Berlin, 
and University of Bonn), all with male and female voices. A 
total of 10 speech samples have been generated per TTS sys-
tem, half for male speakers and half for female ones. The syn-
thesized speech samples have an average duration of 11 sec-
onds and consist of two utterances separated by a silence in-
terval of approximately two seconds. All samples were band-
pass-filtered (300-3400 Hz) and normalized to an active 
speech level of -26 dBov prior to listener presentation. 

The listening test procedure closely followed ITU-T Rec. 
P.85  [3] and was performed in a silent listening room. 17 lis-
teners (10 female, 7 male) participated in the test; all were 
German students and the age ranged from 20-26. Listeners 
were given a parallel task and asked to rate the synthesized 
speech signals using eight different quality rating scales. Of 
the eight scales used, only five are described in ITU-T Rec. 
P.85. We limit our analysis here to the ratings on the natural-
ness (providing the largest range between worst- and best- 
rated synthesis), but plan to carry out an analysis of the other 
dimensions in the near future. 

3.2. Test 2 

The second test was carried out in the frame of a Master thesis 
at Quality and Usability Lab, TU Berlin. It consisted of speech 
material from 6 German TTS systems: AT&T, ATIP Proser, 

DRESS, Nuance RealSpeak, MARY, MBROLA. For each 
synthesizer, 5 samples of 7-8 s length have been generated, 
using text material which is typical for train travel announce-
ments. The stimuli have been pre-processed as in Test 1, 
coded-decoded with log PCM according to ITU-T Rec. G.711, 
and presented to 25 listeners (13 male, 12 female, age range 
20-35years, average age 25.8) in a quiet test room. Again, the 
procedure described in ITU-T Rec. P.85 was followed, using 4 
rating scales of which only the naturalness scale will be fur-
ther analyzed here. 

3.3. Test 3 

The third test was part of a Bachelor thesis carried out at 
Ruhr-University Bochum and is described in detail in  [19]. It 
contained speech stimuli from 3 different TTS systems 
(SyRUB, the MBROLA-based Proser and the Cepstral synthe-
sizer, the latter two with two different voices each, resulting in 
only 3 male and 2 female voices), as well as two natural 
voices. The speech samples have been transmitted over a 
simulated standard ISDN telephone channel with default char-
acteristics, and then judged for their overall quality in a natu-
ral living-room environment which did not fully respect the 
acoustic requirements for test rooms given in ITU-T Rec. 
P.800. In contrast to Tests 1 and 2, no parallel task was given 
to the test subjects; they just had to rate the overall quality 
(not “naturalness”) on a continuous scale labeled from 0 to 6, 
using a slider presented on a computer screen. 20 naïve listen-
ers (10 male, 10 female, no age record available) participated 
in the test, most of them were university students. 

4. Results and discussion 
The subjective ratings have been averaged per stimulus which 
can be compared to the estimated quality rating obtained from 
the model. We used the Log-Likelihood, the P.563 parameters, 
the general parameters, and any combination of these as input 
parameters to the quality estimation function, and report on 
the correlations and the root mean squared error. Since the 
rating scale has not really interval level we provide both the 
Pearson correlation R and the Spearman rank-order correlation 
ρ. The analysis is first carried out on a per-stimulus basis and 

Test 1 Test 2 Test 3 
Input variables R rmse ρ R rmse ρ R rmse ρ 
LL 0.17/0.17 0.89/0.86 -0.02/-0.14 -0.32/-0.38 0.80/0.73 -0.35/-0.37 0.38/1.00 0.47/0.18 0.47/1.00 
P.563 params 0.81/0.92 0.42/0.31 0.79/0.83 0.48/0.59 0.52/0.43 0.46/0.54 0.69/1.00 0.36/0.22 0.75/1.00 
General params 0.89/0.97 0.30/0.16 0.89/0.94 0.80/0.92 0.37/0.25 0.75/0.94 0.69/1.00 0.33/0.16 0.68/1.00 
LL + P.563 params 0.84/0.98 0.35/0.16 0.87/0.89 0.53/0.65 0.50/0.39 0.47/0.54 0.73/1.00 0.29/0.12 0.77/1.00 
LL + general params 0.89/0.97 0.30/0.15 0.90/0.94 0.81/0.93 0.36/0.23 0.77/0.94 0.70/1.00 0.31/0.14 0.65/1.00 
P.563 + general params 0.89/0.97 0.30/0.16 0.89/0.94 0.80/0.92 0.37/0.25 0.75/0.94 0.69/1.00 0.33/0.16 0.68/1.00 
LL + P.563 + general params 0.89/0.97 0.29/0.14 0.90/0.94 0.80/0.92 0.36/0.24 0.77/0.94 0.71/1.00 0.31/0.15 0.70/1.00 

Test 1 Test 2 Test 3 
Input variables R rmse ρ R rmse ρ R rmse ρ 
LL 0.77/0.81 0.51/0.45 0.51/0.54 0.48/0.56 0.63/0.54 0.45/0.31 -0.57/-0.98 1.09/0.98 -0.52/-1.00
P.563 params 0.90/0.96 0.34/0.21 0.79/0.83 0.85/0.91 0.37/0.30 0.87/0.89 0.80/0.97 0.37/0.20 0.82/0.50 
General params 0.77/0.83 0.57/0.49 0.75/0.71 0.64/0.73 0.57/0.49 0.60/0.71 0.88/1.00 0.30/0.08 0.81/1.00 
LL + P.563 params 0.90/0.96 0.36/0.20 0.84/0.83 0.83/0.89 0.38/0.31 0.85/0.94 0.82/0.98 0.36/0.16 0.79/1.00 
LL + general params 0.86/0.91 0.43/0.35 0.73/0.66 0.71/0.80 0.47/0.38 0.68/0.60 0.86/0.99 0.32/0.09 0.81/1.00 
P.563 + general params 0.89/0.96 0.36/0.22 0.78/0.83 0.82/0.88 0.38/0.31 0.84/0.89 0.76/0.96 0.40/0.23 0.82/0.50 
LL + P.563 + general params 0.89/0.96 0.37/0.21 0.81/0.83 0.80/0.85 0.39/0.33 0.82/0.94 0.78/0.98 0.38/0.19 0.77/1.00 

Table 1. Correlations and prediction error for male speech files. Reported values correspond to “per-stimulus/per-synthesizer”. 

Table 2. Correlations and prediction error for female speech files. Reported values correspond to “per-stimulus/per-synthesizer” 



then on a per-synthesizer basis; it is limited to the synthesized 
speech samples only, as we did not want to artificially in-
crease the correlations by adding the naturally-produced stim-
uli which usually show a higher quality and thus increase the 
range of quality levels covered in the experiment.  

The results for the male stimuli are shown in Tab. 1. Whe-
reas all input variables work relatively well for predicting the 
Test 1 data, LL  shows problems with the data from Test 2 
and Test 3. For these tests, the parameter-based approach is 
significantly better, both with the P.563 parameters and with 
the general parameter set. The best combination which shows 
R > 0.8 for all databases is LL  and the P.563 parameters. 

For the female stimuli, only the general parameters show a 
satisfying performance; here, the combination of LL  and 
general parameters reaches R > 0.8 for Tests 1 and 2, and still 
R = 0.7 for Test 3. It is important to note that the low correla-
tion in Test 1 does not contradict the higher performance 
which has been observed in  [10], as one of the synthesizers 
(MBROLA, TU Berlin) was excluded from that analysis, pro-
viding a significantly higher correlation. Up to now, we can-
not explain that outlier, but we kept it in the analysis to high-
light the problems of the LL  approach with female data. 

On a per-synthesizer basis, the performance of the estima-
tors still increases. Apparently, the differences between indi-
vidually synthesized speech samples are averaged out in the 
per-synthesizer analysis. This shows that the best-performing 
models stated above are even better in comparing different 
synthesizers than comparing individual synthesized speech 
samples. However, it has to be noted that Test 3 only con-
tained 3 male and 2 female synthesizers; the high correlations 
get meaningless in that case. 

5. Conclusions and future work 
We compared and combined two approaches for instrumen-
tally predicting TTS quality on 3 auditory databases. Over all 
databases, the combination of LL  with the P.563 parameters 
achieved the best performance on the male data, and the com-
bination of LL  and the general parameters on the female data. 
Lower performance was obtained using the LL  approach on 
female data relative to male data. While the source of this gap 
is still unknown, we suspect it may be due to errors in online 
F0 calculation, thus leading female speech signals to be scored 
against male reference HMMs. 

Overall, the correlations obtained on all databases are 
quite encouraging: In 5 out of 6 cases, correlations greater 
than 0.8 could be obtained; further increases could be ob-
served on a per-synthesizer basis. As we expected, this indi-
cates that the approach is better for differentiating between 
synthesizers than it is for differentiating between individual 
stimuli produced by one particular synthesizer. 

We plan to extend the analysis to the other rating scales of 
the auditory experiments. We will try to find underlying rea-
sons for the bad performance of the LL  approach on the fe-
male data, and further analyze the impact of the natural speech 
data used for training the reference models. We would like to 
come up with one model fitting both male and female synthe-
sized voices, and different types of (also formant) synthesiz-
ers, and test it on independent data (e.g. from the Blizzard 
challenge) in order to analyze the robustness of our approach. 
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