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ABSTRACT

Spastic dysarthric speech is often associated with imprecise

placement of articulators which, in turn, cause perturbations

in speech temporal dynamics, such as unclear distinctions be-

tween adjacent phonemes. While these perturbations can lead

to a significant reduction in intelligibility, measures to objec-

tively assess their detrimental effect on intelligibility are lack-

ing. In this paper, short- and long-term temporal dynamics

measures are proposed and evaluated as correlates of subjec-

tive intelligibility. The former is based on log-energy tem-

poral dynamics information, whereas the latter is based on

an auditory-inspired modulation spectral signal representa-

tion. A composite measure is also developed based on linearly

combining the proposed measures with a tone-unit duration

parameter. Experiments with the publicly-available ‘Univer-

sal Access’ database of spastic dysarthric speech show that

the proposed composite measure can achieve rank correla-

tions with subjective ratings as high as 0.87, thus providing

a tool to automatically diagnose speech disorder severity and

to evaluate dysarthria treatment outcomes.

Index Terms— Dysarthria, temporal dynamics, intelligi-

bility, modulation spectrum, cepstrum.

1. INTRODUCTION

Dysarthria is a motor speech disorder, resultant from damage

to the central and/or peripheral nervous systems, which af-

fects articulation, speech rates, and prosody, amongst other

intelligibility-reducing factors (e.g., vocal harshness). The

most prominent subtype of dysarthria is commonly associ-

ated with cerebral palsy and is called “spastic dysarthria” [1].

Symptoms of spastic dysarthric speech can include imprecise

placement of articulators, atypical speech rates, incomplete

consonant closure, and monotonicity [1]. Today, therapists

mainly depend on subjective intelligibility tests to character-

ize speech disorder severity and to evaluate treatments.

Subjective tests, however, are costly, laborious, and sub-

ject to many listener biases (e.g., familiarity with the patient’s

speech disorder). Objective measurement methods, on the

other hand, replace the listener panel with a computational al-

gorithm, thus can offer an economical and reliable alternative

to subjective assessment. Objective measures aim to deliver

scores that are highly correlated with the intelligibility ratings

obtained from subjective listening experiments. In fact, there

is growing evidence that objective measures are being used to

assist clinicians in dysarthria treatment decisions [2].

Objective methods can be classified as either blind or

comparison-based. Comparison-based methods depend on a

reference signal or feature prototype of a target word being

uttered. In [3], for example, the Itakura-Saito distortion was

computed between the produced disordered speech utterance

and the same utterance spoken by a healthy individual. In or-

der to account for differences in utterance durations, dynamic

time warping was applied. Alternately, small-vocabulary au-

tomatic speech recognition has become a popular method of

intelligibility assessment for speakers with mild or moderate

dysarthria; technological advances, however, are still needed

before ASR is used for severe dysarthric speakers [4]. An

additional limitation of ASR is the sparseness of available

data needed to accurately train speaker-dependent acoustic

models which have been shown to outperform those obtained

from “healthy” natural speech [5].

In many practical applications reference signals and/or

features may not be available and blind measures are needed.

Today, the majority of existing blind measures depend on

quantifying atypical prosody and parameters such as fun-

damental frequency (f0) variation and second-formant slope

transitions [6]. Recent studies, however, have shown that ar-

ticulation errors are the major contributing factor to reduced

intelligibility in dysarthric speech [7], followed by prosody,

voice quality, and nasality. Representative symptoms of

imprecise placement of articulators can include prolonged

phonemes, unclear distinction between adjacent phonemes,

odd speech rates, and rhythmic disturbances, to name a few

[1]. Hence, it is expected that the development of blind mea-

sures of speech temporal dynamics perturbations will allow

for accurate dysarthric intelligibility estimation. In this paper,

several measures are described and evaluated on the publicly-

available ‘Universal Access’ dysarthric speech database.
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2. QUANTIFYING PERTURBATIONS IN SPEECH
TEMPORAL DYNAMICS

Several factors are known to adversely affect speech intelli-

gibility for individuals with dysarthria, the most prominent

being odd temporal dynamics, and disordered prosody [7].

Here, short-term and long-term temporal dynamics measures

are explored as indicators of dysarthric speech intelligibility.

An additional parameter, namely, word duration within tone

units, is also explored as it captures temporal distortions af-

fecting prosody. These measures, along with several bench-

mark ones, are described in more detail below.

2.1. Short-term Temporal Dynamics

The zeroth order cepstral coefficient is computed as a mea-

sure of short-term log-spectral energy and the zeroth order

delta coefficient is used as a measure of log-energy rate of

change. Let c0(m) denote the zeroth order cepstral coeffi-

cient for frame m. Δc0(m) represents the zeroth order delta

coefficient and is computed as

Δc0(m) =

L∑
l=−L

l c0(m+ l), (1)

where the normalization factor
∑L

l=−L l2 is omitted as it does

not affect the results. In our simulations L = 3 is used and

cepstral coefficients are computed over 32-millisecond frames

with 10-millisecond frame shifts. In order to characterize

short-term temporal dynamics oddity, the standard deviation

(σΔ) of the N Δc0 samples within a speech file is used

σΔ =

√√√√ 1

N − 1

N∑
m=1

(Δc0(m)− Δ̄c0)2, (2)

where Δ̄c0 indicates the sample average of Δc0(m).

2.2. Long-Term Temporal Dynamics

Long-term speech temporal dynamics information is captured

by means of an auditory-inspired modulation spectral signal

representation which characterizes the rate of change of long-

term speech temporal envelopes. To obtain the modulation

spectral representation, the dysarthric speech signal is first fil-

tered by a bank of 23 gammatone critical-band filters, which

emulate the processing performed by the cochlea. The filter

center frequencies range from 50 Hz to approximately half the

sample rate; filter bandwidths are characterized by the equiv-

alent rectangular bandwidth. Long-term temporal dynamics

information is captured from the Hilbert temporal envelope

found for each of the 23 gammatone filter outputs.

Hilbert temporal envelopes are windowed and a discrete

Fourier transform is used to compute the modulation spec-

trum for each frame. Lastly, modulation frequency bins are

grouped into eight bands in order to emulate an auditory-

inspired modulation filterbank [8]. Second-order bandpass

filters with a quality factor Q = 2 are used and modula-

tion filter center frequencies range from 2 − 64 Hz. The kth

modulation band energy for frame m is denoted as Ej,k(m),
k = 1, . . . , 8. Additionally, the modulation energy averaged

over N speech frames is given by

Ēj,k =
1

N

N∑
i=1

Ej,k(i). (3)

It is known that healthy natural speech contains dominant

modulation frequencies from 2− 20 Hz with spectral peaks

at approximately 4 Hz [9]. It is hypothesized that prolonged

phonemes, slower speech rates, as well as the unclear distinc-

tion between adjacent phonemes caused by imprecise place-

ment of articulators, will cause a shift of the modulation fre-

quency content to modulation frequencies below 4 Hz. In

turn, as intelligibility levels increase, modulation frequency

content will be better spread across higher modulation fre-

quencies, as observed with natural speech [10]. In order to

characterize this oddity in speech temporal dynamics, the ra-

tio of modulation energy at frequencies below 4 Hz to mod-

ulation frequencies above 4 Hz is proposed. The low-to-high

modulation energy ratio (LHMR) is given by

LHMR =

K∗∑
k=1

23∑
j=1

Ēj,k

8∑
k=K∗+1

23∑
j=1

Ēj,k

, (4)

where K∗ corresponds to the index of the modulation filter

centered at approximately 4 Hz; in our experiments, K∗ = 4.

2.3. Voicing Duration

An additional temporal parameter is computed, namely, the

total duration of voiced segments within the uttered word.

The measure is represented by V and has been used in the

past to characterize speech disorders [11].

2.4. Benchmark Measures: “EMS”

In [12], several temporal envelope modulation spectral (EMS)

features were proposed and used to characterize long-term dy-

namics in dysarthric speech. In the mentioned study, the mod-

ulation spectrum was computed in a manner different than

that described in Section 2.2. More specifically, the dysarthric

speech was first filtered through a bank of seven octave-band

filters with center frequencies ranging from 125 − 8000 Hz.

Temporal envelopes were then extracted from the full-band

signal as well as from the seven sub-band signals via half-

rectification and lowpass filtering at 30 Hz. The envelopes

were downsampled to 80 Hz, mean-subtracted and the modu-

lation spectrum was computed (up to 10 Hz) via a 512-point

FFT using a Tukey window.
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A number of features were then extracted from the com-

puted modulation spectrum and six salient features were used

to estimate dysarthric speech intelligibility. The features were

B250 and B8000 (normalized EMS energy below 4 Hz); A4000

(normalized EMS energy between 4-10 Hz); R2000 (ratio of

B2000 to A2000); E250 and E4000 (normalized EMS energy

between 3-6 Hz), where the subscript indicates the center fre-

quency of the octave-band filter used in the computation of the

measure. These features are used as benchmark measures.

It is important to emphasize, however, that due to lim-

itations in our dataset (sampled at 16 kHz, as opposed to

44.1 kHz as in [12]) calculation of the measure B8000 was

not possible. To ameliorate this shortcoming, a slightly dif-

ferent filterbank was used in our simulations. In lieu of 7

octave-band filters, 8 critical-band gammatone filters were

used with center frequencies ranging from 125-5200 Hz and

bandwidths from approximately 80-600 Hz. With this modi-

fication, the parameter R2000 was computed as the average of

the ratio parameter computed for the fifth and sixth critical-

band filters, centered at 1.5 kHz and 2.4 kHz, respectively.

Similarly, parameters E4000 and A4000 were computed by av-

eraging the respective parameters over the seventh and eighth

filters, centered at 3.4 kHz and 5.2 kHz, respectively. Lastly,

the measure B8000 was computed from the last filter centered

at 5.2 kHz. Despite these modifications, the aforementioned

notation is used throughout the remainder of this paper.

2.5. Composite Measures

To test the complementariness of the developed and bench-

mark measures, two composite measures are also explored

fproposed = α0 + α1 ∗ σΔ + α2 ∗ LHMR + α3 ∗ V ,
fEMS = β0 + β1 ∗R2000 + β2 ∗B8000 + β3 ∗B250

+ β4 ∗ E4000 + β5 ∗ E250 + β6 ∗A4000.

To estimate the weights αi and βi, the available data is parti-

tioned into disjoint training and test sets (see Section 3.2) and

least-squares linear regression is used.

3. EXPERIMENTAL RESULTS

3.1. Database: UA-Speech

The data used in our experiments consisted of the audio

content of the Universal Access (UA-Speech) audio-visual

database [13]. Speech data from ten participants diagnosed

with spastic dysarthria due to cerebral palsy were used in our

experiments; participant demographics is shown in Table 1.

Each participant read a total of 765 isolated words displayed

on a computer screen, spread over three blocks of 255 words,

including 155 words that were repeated in each block and 100

uncommon words that differed across blocks. The repeated

words consisted of the 10 digits, 26 radio alphabet letters, 19

computer commands, and the 100 most common words in the

Table 1. Demographics of the ten spastic dysarthric speakers

Subject Gender Age Intelligibility Category

1 male 18 2% very low

2 male 18 15% very low

3 male 58 28% low

4 male unreported 43% low

5 male 21 58% mid

6 male 40 91% high

7 male 28 93% high

8 female 51 6% very low

9 female 30 29% low

10 female 22 95% high

Brown corpus of written English. The 300 uncommon words

(100 per block) were selected from children’s novels [13].

For the subjective intelligibility test, five listeners were

recruited per speaker. Listeners were between the ages of 18-

40, native speakers of American English, had no prior expe-

rience with disordered speech, and had no previous training

in phonetic transcription. Listeners were instructed to pro-

vide orthographic transcriptions of 225 speech utterances pre-

sented via headphones in a quiet environment. The 225 ut-

terances consisted of 10 digits, 25 radio alphabet letters, 19

computer commands, and 73 words randomly selected from

each of the common and uncommon word categories, plus 25

arbitrarily chosen words that were repeated in order to assess

intra-listener reliability, which remained around 92%. Lis-

tener transcriptions were then analyzed and the mean percent-

age of correct responses, averaged across the five listeners,

was calculated to obtain the subjective intelligibility score of

each dysarthric speaker.

3.2. Results

Table 2 reports the Pearson (R) and Spearman rank (RS) cor-

relation coefficients, along with their corresponding p−values,

for the developed and benchmark measures. RS is used to

quantify how similar the measures rank with subjective listen-

ing ratings. As can be seen, all proposed measures achieved

significant Pearson and Spearman correlations (p < 0.05)

with subjective intelligibility ratings. On the other hand, only

two of the benchmark measures achieved significant Pearson

correlations, namely B250, E250; only the latter also achieved

a significant Spearman correlation.

In order to obtain the weights of the composite measures,

the UA-Speech database was partitioned into two disjoint

sets. Speech files belonging to the ‘uncommon word’ cate-

gory (300 files per participant) served as (unseen) test data

and the remaining files (465 files per participant) served as

training data. As can be seen from Table 2, the composite

measure based on the three proposed measures (fproposed)
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Table 2. Performance of proposed and benchmark measures.

Performances reported for composite measures fproposed and

fEMS are based on the unseen test set comprised of speech

files belonging to the ‘uncommon word’ category.

Measure R p RS p

σΔ 0.76 0.01 0.80 0.01

LHMR -0.75 0.01 -0.67 0.03

V -0.79 0.01 -0.73 0.02

fproposed 0.85 0.01 0.87 0.01

R2000 -0.61 0.06 -0.41 0.25

B8000 0.40 0.25 0.22 0.50

B250 0.64 0.05 0.62 0.06

E4000 -0.30 0.40 -0.33 0.35

E250 0.70 0.02 0.72 0.02

A4000 -0.30 0.40 -0.28 0.40

fEMS 0.79 0.01 0.69 0.03

achieved R = 0.85 and RS = 0.87 on the unseen test set.

On the other hand, the benchmark composite measure based

on the six EMS features (fEMS) achieved R = 0.79 and

RS = 0.69. Hence, fproposed attains an approximate 29%

correlation-improvement (R%) relative to fEMS for Pearson

correlation and a 58% correlation-improvement in Spearman

correlation. R% is computed as

R% =
Rproposed −REMS

1−REMS
× 100%, (5)

and reflects the percentage reduction of the EMS-based com-

posite measure’s performance gap to perfect correlation.

3.3. Discussion

The proposed LHMR measure proposed here differs from the

benchmark R2000 measure in several manners. First, LHMR

incorporates information from 23 acoustic frequency bands

and not just the band centered at 2 kHz. Second, the use of

the Hilbert transform for temporal envelope calculation al-

lows for modulation frequencies beyond 10 Hz to be incor-

porated; such higher frequencies are important for intelligi-

bility estimation [10]. Lastly, the proposed LHMR measure

is based on an auditory-inspired modulation filterbank which

is used to group modulation frequency bins according to psy-

choacoustic insights. With the R2000 measure, simple averag-

ing of Fourier transform-derived frequency bins is performed.

Moreover, our implementation of the benchmark measures

differed slightly from those reported in [12]. A direct compar-

ison between the results reported there, however, suggests that

the modifications did not affect performance (e.g., R = 0.69
was reported for parameter R2000). The differences obtained

in correlation are likely due to utterance types and not the fil-

terbank modifications; in [12], sentences were used, whereas

with the UA-Speech database, single words were uttered.

4. CONCLUSION

In this paper, three measures were described to character-

ize temporal dynamics perturbations and shown to correlate

significantly with subjective intelligibility ratings and to out-

perform several benchmark metrics. A composite measure

was also developed and shown to be a reliable indicator of

dysarthric speech intelligibility, thus providing a means to au-

tomatically evaluate dysarthria treatments.
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