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Abstract
In this paper, we explore the use of the standard ITU-T
P.563 speech quality estimation algorithm for automatic
assessment of dysarthric speech intelligibility. A linear
mapping consisting of three salient P.563 internal fea-
tures is proposed and shown to accurately estimate spas-
tic dysarthric speech intelligibility. Delta-energy features
are further proposed in order to characterize the atypi-
cal spectral dynamics and limited vowel space observed
with spastic dysarthria. Experiments using the publicly-
available Universal Access database (10 speaker patients)
show that when salient delta-energy and internal P.563
features are used, correlations with subjective intelligi-
bility ratings as high as 0.98 can be attained.
Index Terms: Dysarthria, intelligibility, P.563, subjec-
tive quality, delta-energy

1. Introduction
Patients with cerebral palsy may develop a speech dis-
order, called “spastic dysarthria”, which can severely af-
fect the intelligibility of their speech [1]. The symptoms
of spastic dysarthria include distorted vowels and con-
sonants, reduced speaking rate, harsh voice quality, and
abnormal prosody (e.g., uniform loudness and pitch) [1].
The treatment of speech disorders usually includes as-
sessment of intelligibility in order to gain a better picture
of the patient’s condition. The most common method of
assessing intelligibility is through a listener based (sub-
jective) assessment. Drawbacks of subjective assessment
include the inherent variability of human listener ratings
and the cost of a clinician’s time. Familiarity with the
dysarthric speaker’s particulars may bias the intelligibil-
ity estimate [2]; furthermore, listeners may weigh per-
ceptual dimensions differently to estimate intelligibility,
resulting in inconsistencies. By using a computer based
approach, an objective, repeatable method can be crafted.

In the effort to create such a computer based method,
there have been a few different approaches. Researchers
have developed automatic speech recognition (ASR) sys-
tems, trained on healthy speech, that use the recognition
rate as a measure of intelligibility [2][3] This approach

assumes that ASR systems will behave similarly to hu-
man perception when presented with dysarthric speech.
An alternate approach involves training the intelligibility
estimation system with dysarthric speech [4]. This ap-
proach, however, still relies on an ASR system trained
with normal speech.

ASR systems can be difficult to train, and usually re-
quire a template ‘reference’ signal or knowledge about
the phonetic content of the target word. To estimate intel-
ligibility without vocabulary restriction, features which
do not require a reference signal are desired. These fea-
tures are known as ‘blind’ or ‘single-ended’. Many sys-
tems exist for computing blind estimates of subjective
telephone speech quality, but it is not known if such sys-
tems can be modified to estimate intelligibility of dysarth-
ric speech. While speech quality and intelligibility are
related, their relationship is not trivial [5]. For example,
broad bandwidth speech may be intelligible and pleasant,
whereas synthesized speech may be intelligible but artifi-
cial sounding and therefore deemed poor in quality.

In this paper, we first investigate existing blind as-
sessment methods for evaluating speech quality. To that
end, we explore the “ITU-T P.563” [6] standard, which is
a method for blind, objective speech quality estimation.
The P.563 standard describes an algorithm for determin-
ing the dominant type of distortion of the input speech
signal, and then combines relevant features based on the
chosen class to compute a mean opinion score (MOS) es-
timate. After examining the P.563 standard, we propose
new blind features better suited to estimating intelligi-
bility in dysarthric subjects. The proposed features are
delta-energy coefficients derived from a mel-spaced tri-
angular filterbank. The use of delta instead of absolute
energy values reduces speaker dependence and better re-
flects the uniform loudness typical of spastic dysarthria.
Subbands close to the extreme ranges of the F1-F2 vowel
space are shown to be the most correlated with intelligi-
bility. Next, we update the feature mapping defined in
P.563 to improve correlation with subjective intelligibil-
ity scores. Re-mapping P.563’s features for a particular
purpose has precedence; for example, the work in [7] pro-
posed a new feature mapping to improve MOS estimates
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of noise suppressed speech. Finally, we show that further
improvement can be attained if delta-energy features are
included in the revised mapping.

2. ITU P.563: Internal features and an
updated mapping function

As previously discussed, P.563 is a standard for the blind
estimation of narrow-band speech quality, namely, the
mean opinion score (MOS). Before estimating the MOS
value, P.563 first classifies the distortion present in the
input signal into one of six ‘distortion classes’. The six
classes cover distortions related to noise, clipping, mut-
ing, and ‘unnatural’ voice. Class assignment is performed
using a hierarchical approach that chooses the most rel-
evant distortion class when multiple distortion types are
detected. The reasoning behind this is psycho-acoustic;
some types of distortion affect subjective quality scores
more than others. Based on the selected class, P.563 se-
lectively combines some of its 43 internal features to com-
pute a final MOS estimate. The 43 features include pa-
rameters related to vocal tract shape, signal noise charac-
teristics and linear predictive coding (LPC) parameters.
For more details, refer to [6].

In this paper, we examine the MOS estimates from
the six distortion classes, as well as the 43 internal fea-
tures. Despite not being originally designed for our pur-
pose, one or more of the parameters may show significant
correlation with intelligibility. Furthermore, we propose
a new mapping which linearly combines salient internal
P.563 features to estimate intelligibility. The P.563 fea-
tures included in the model are to be chosen based on how
well they rank in an iterative feature selection process.

Let φest be the intelligibility estimate, N the num-
ber of features, F the set of selected features, and ai the
model coefficient for feature fi. Our proposed model can
then be written as

φest = a0 +
N∑
i=1

aifi, fi ∈ F . (1)

3. Proposed Features: Mel-frequency
delta-energy coefficients

Several spectral subbands are critical for speech intelligi-
bility; prior work has shown that intelligibility is mostly
preserved when only sparse spectral information is kept
[8]. Furthermore, energy values in particular subbands
are likely to be sensitive to the imprecise consonants and
distorted vowels typical of spastic dysarthria; subbands
lying on the extremities of the F1-F2 space should be par-
ticularly sensitive due to a phenomenon known as ‘vowel
centralization’ [9]. Energy content above 4000 Hz should
also decrease in dysarthric speech [10].

Center frequencies of the triangular filters are linearly
spaced on the mel scale, and range in value from 89 to
7016 Hz. Utterances are first normalized before feature

extraction to−26 dBov by the ITU-P56 voltmeter [11]. A
discrete Fourier transform and a shifting 50 ms Hamming
window with 50% overlap are computed over speech seg-
ments to get the magnitude spectrum. The filterbank en-
ergy values are

Mfc(i) =

L/2∑
k=0

|X(i, k)|2Yfc(k), (2)

where X(i, k) denotes the kth Fourier transform coeffi-
cient of the ith windowed frame, L is the length of the
Fourier transform, fc is the center frequency of a trian-
gular filter, and Yfc(k) the triangular filter coefficients.
Let Nw be the number of frames. The delta mel-band
energies are finally defined as:

δfc =
1

Nw − 1

Nw−1∑
i=1

|Mfc(i+ 1)−Mfc(i)|. (3)

4. Experimental results
4.1. Universal access database

The data used in this paper is a subset of the Universal
Access database [12], which contains single word record-
ings of cerebral palsied dysarthric subjects. We use the
10 speakers with spastic dysarthria that have correspond-
ing subjective intelligibility scores. The vocabulary rep-
resented in the database consists of 300 uncommon En-
glish words, and 155 other words. The 300 uncommon
words were selected from children’s novels, and the 155
other words consist of spoken single digits (10 words),
words from the radio alphabet (26 words), computer com-
mands (19 words), and the 100 most common English
words from the Brown Corpus of Written English. Each
speaker has 765 files in the datbase, consisting of one
utterance each of the 300 ‘uncommon’ words, and three
utterances of each of the 155 ‘other’ words.

To assess intelligibility, a subset of 200 words in to-
tal was taken from all word categories; 25 of the 200
words were repeated to assess intra-speaker reliability.
Five naive judges, all native speakers of American En-
glish between 18 and 40 years of age, were employed to
transcribe what they heard for each word. The five tran-
scription accuracy percentages were averaged to give one
intelligibility score per speaker. We label these average
scores as {φ1, φ2, .., φ10} = Φ. They are used as our
‘ground truth’ intelligibility ratings, with which we mea-
sure the performance of our proposed estimators.

4.2. P.563 internal features and updated mapping
4.2.1. P.563 MOS estimates

The 765 utterances per speaker were first downsampled
to 8 kHz, and then processed by P.563. For each of the
six distortion classes, an average MOS value is calculated
over each speaker’s 765 utterances; Pearson’s correlation
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coefficient (denoted r) is then computed between the av-
erages and Φ. The result is that none of the six classes
of MOS estimates are significanty correlated (p < 0.05)
with Φ. Therefore, we disregard the MOS estimates as
potential intelligibility estimators and focus on designing
a new mapping better suited to our task.

4.2.2. Feature selection

To select a suitable set of features for the new mapping,
we run M trials of a feature selection process which se-
lects and ranks N features every trial. Following the M
trials, average feature rank (AFR) is employed to select a
final set of features for our mapping.

Each feature selection trial proceeds as follows. First,
233 of the 465 word vocabulary are randomly selected
(including 150 uncommon words). Utterances correspond-
ing to the selected vocabulary serve as data for feature
selection and model training. Feature selection begins by
discarding any feature not significantly correlated with Φ
(p > 0.05); sequential feature selection (SFS) [13] then
selects N of the remaining features, with r serving as se-
lection criterion. The sequentially selected features are
given increasing rank values from one to N , with one be-
ing the highest rank. The selected features constitute a
temporary feature set Fi used to form the linear model
for trial i, with model coefficients obtained using least
squares regression. For model validation, unseen data
(i.e., not used for feature selection and model training)
is applied to the trained model to compute one φest value
per speaker. Model performance is quantified using r,
Spearman’s rank correlation (ρ), and root mean square
error (ε) between φest values and Φ.

Feature selection is repeatedM times for a given value
of N , we average the M values of r. ρ and ε and denote
the results r̄, ρ̄ and ε̄ to give measures of average model
performance. To determine which features were selected
most often, we use average feature rank (AFR) to obtain
a final feature list of length N . AFR can be expressed as

AFRi =
1

M

M∑
j=1

Ri(j), (4)

where Ri(j) is the rank of feature fi for trial j. Since
each trial selects N features, if feature fi is not selected
for trial j, Ri(j) = N + 1. The features with the N
smallest AFR values then become our final choice for F .

4.2.3. Updated P.563 feature mapping

The first task in designing a new P.563 feature mapping
is finding a suitable value for N , the number of included
features. To do this, we vary N from one to 20 and ex-
amine r̄ asN increases; for each value ofN , we compute
r̄ using M = 200 feature selection trials. The 43 P.563
features serve as the candidate feature pool. Performance
begins to degrade severely for N > 6; therefore, perfor-

Estimator Performance Measure
r̄ ρ̄ ε̄ (%)

P.563 re-mapping 0.95 0.93 11.0
Composite 0.98 0.95 7.1

Table 1: Mean performance measures from P.563 and
composite estimator experiments

mance results versus number of features, up to N = 6,
are plotted in Figure 1. We choose N = 3 as it offers
near optimal performance with a small number of fea-
tures. Average performance values r̄, ρ̄ and ε̄ for N = 3
are listed in Table 1.

The high average correlation values (up to 0.95) show
that linearly combining internal P.563 features is a better
approach to estimating intelligibility than using P.563’s
MOS estimates. Now that N has been chosen, AFR can
be applied to the results from the M = 200 feature se-
lection trials. The top three selected features, ordered by
AFR, are listed in Table 2. To better understand why the
listed features are useful, each one is discussed in turn.

Feature Pool AFR Feature Name

P.563
1.00 LPCcurt
2.70 CepCurt
3.34 SpecLvlRange

P.563 + proposed
1.00 LPCcurt
2.04 δ992
3.03 δ1361

Table 2: AFR values of top ranked features

The top two ranked features, LPCcurt (LPC kurtosis)
and CepCurt (cepstum kurtosis), characterise abnormal
deviations in the sample kurtosis values of LPC and cep-
stral coefficients. Kurtosis characterises the ‘peakedness’
of a distribution. Normal speech produces LPCcurt and
CepCurt values within certain ranges; P.563 maps devia-
tions from expected ranges to low MOS scores.

The third highest ranked feature, SpecLvlRange (spec-
tral level range), is calculated by computing the average
difference between the 85th and 20th percentiles of the
spectral amplitude distribution (estimated from a short
term Fourier transform). The relevance of this feature
lies in the hypernasal nature of spastic dysarthric speech.
Many dysarthric speech samples in the database have one
prominent low frequency formant, causing the average
difference between the two percentile values to increase.

4.3. Proposed features

Before incorporating proposed features into our feature
selection process, we first survey their behavior with re-
spect to intelligibility. Average feature values are com-
puted over each speaker’s 765 utterances; then, r and
ρ are calculated between average feature variables and
Φ, as was done with the MOS estimates. Twelve of the
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20 δfc features show significant (p < 0.05) r correlation
with Φ and are listed in Table 3.

The properties of dysarthric speech corroborate the
results presented here. All listed correlations are positive,
relating to the uniform loudness voice typical of spas-
tic dysarthria. Coefficients from subbands with center
frequencies around 1000 and 2500 Hz correlate strongly
with Φ. These frequencies lie roughly on the extremeties
of the F1-F2 space. Table 3 shows that delta energy val-
ues for subbands above 3500 Hz are also strongly corre-
lated with Φ, corroborating our hypothesis regarding high
frequency energy.
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Figure 1: Estimator performance as a function of N

4.4. Composite estimator
The final experiment involves combing proposed features
with P.563 features into a composite feature pool and per-
forming feature selection as before. The experimental
procedure from Section 4.2.3 is re-used. Again, N = 3
is chosen based on optimizing r̄ as N varies from one to
six (Figure 1). As can be seen, incorporating proposed
features improves results for N > 1. Mean performance
measures and top ranked features are presented alongside
previous results in Tables 1 and 2, respectively. Features
δ992 and δ1361, displace SpecLvlRange and CepCurt from
the previous experiment. AFR values for the top three
features are lower than those obtained previously. Thus,
features are top ranked in more trials than before. In-
terestingly, features δ992 and δ1361 are not the highest
ranked in Table 3. Closer inspection reveals that δ992 and
δ1361 aided in the estimation of intelligibility scores for
moderate-mild dysarthria (i.e., greater than 50%).

5. Conclusion
We have examined the capabilities of P.563, a standard
for blind estimation of mean opinion scores (MOS), and
determined that a new mapping of internal P.563 features
was able to outperform MOS estimates as predictors of
intelligibility on dysarthric speech. Additional blind fea-

tures were proposed, and a composite estimator was de-
signed that incorporates proposed with internal P.563 fea-
tures to achieve further improvements. Results indicate
that automatic assessment using blind features is a promis-
ing method for estimating dysartric speech intelligibility.

Feature r ρ

δ4075 0.84 0.82
δ1128 0.83 0.85
δ4683 0.81 0.75
δ3535 0.80 0.82
δ2631 0.76 0.78
δ992 0.76 0.81
δ738 0.75 0.76
δ1361 0.73 0.73
δ5367 0.72 0.65
δ3056 0.70 0.81
δ6144 0.68 0.65
δ1624 0.63 0.65

Table 3: δfc features significantly correlated with Φ
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