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ABSTRACT

This study validates a novel approach to predict speech
intelligibility for Cochlear Implant users (CIs) in rever-
berant environments. More specifically, we explore the
use of existing objective quality and intelligibility met-
rics, applied directly to vocoded speech degraded by room
reverberation, here assessed at ten different reverberation
time (RT60) values: 0 s, 0.4 s – 1.0 s (0.1 s increments),
1.5 s and 2 s. Eight objective speech intelligibility predic-
tors (SIPs) were investigated in this study. Of these, two
were non-intrusive (i.e. did not require a reference sig-
nal) audio quality measures, four were intrusive, and two
were intrusive speech intelligibility indexes. Three types
of vocoders were implemented to examine how speech
intelligibility predictions depended on the vocoder type.
These were: noise-excited vocoder, tone-excited vocoder
and a FFT-based N-of-M vocoder. Experimental results
show that several intrusive quality and intelligibility mea-
sures were highly correlated with exponentially fit CI in-
telligibility data. On the other hand, only a recently - de-
veloped non-intrusive measure showed high correlations.
These evaluations suggest that CI intelligibility may be ac-
curately assessed via objective metrics applied to vocoded
speech, thus may reduce the need for expensive and time-
consuming listening tests.

Keywords: Vocoders, Reverberation, Cochlear Im-
plants, Objective Measures, Speech Intelligibility;

1. INTRODUCTION

Reverberation produces temporal envelope smearing, low
spectral contrast and flattening of formant transition as a
result of self-masking effects. These signal alterations,
especially in the signal envelope, have a dramatic effect
on the speech intelligibility of cochlear implant (CI) user,
as it has been shown both via simulations with vocoders
on normal hearing (NH) listeners [1] [2] and via intelligi-
bility tests on CI users [3]. Several dereverberation algo-
rithms have been proposed and evaluated via one or both
of the methods mentioned above. Subjective testing, how-
ever, is very time consuming, costly and often hindered
by the high inter- and intra-subject variability. Vocoders
are software which can simulate CI hearing, hence have
the advantage of not requiring CI subjects; these tests are
still quite time consuming. A third option is potentially
available: the use of objective measures applied to the

vocoded signal. In [5], and more recently in [4], Chen
and Loizou studied different objective measures as pre-
dictors for speech intelligibility. In [5] they compared
quality scores produced by a standardised speech quality
measurement algorithm termed PESQ [10] with the intel-
ligibility scores of 20 NH subjects in vocoded speech at
different Signal-to-Noise Ratio (SNR) scenarios (-5, 0 and
5dB); correlation values between 0.92 and 0.94 were ob-
tained. In the subsequent work ([4]) they investigated the
suitability of additional objective measures (e.g. NCM,
CSII) together with a more systematic study on the effect
that some parameters of the vocoder have on the overall
correlation. Their investigation did not consider reverber-
ation.
In a recent publication Kokkinakis et al. [3] showed that
speech intelligibility in CI drops exponentially as RT60
linearly increases. The intelligibility scores measured in
CI were exponentially fit as:

score(%) = e(C1·RT60+C2), (1)

where C1 = 0.0014, C2 = 4.528 and the RT60 is a mea-
sure of the amount of reverberation in a room (here ex-
pressed in ms). Such fitting resulted in correlation with
subjective CI scores as high as 0.996. The present study
tests an objective approach to predict speech intelligibility
in CI from vocoded speech when reverberation is the only
form of noise. In order to do so, several speech quality
and intelligibility measures are used as speech intelligi-
bility predictors (SIPs), and their performances are com-
pared in terms of Pearson’s correlation and Spearman’s
correlation between the predicted value and the exponen-
tial fit of CI data, as provided in eq.(1). These measures
are estimated after the signal is passed through a vocoder
which simulates the CI listening. Three types of vocoders
were used in this study to investigate the impact of the
vocoder specifics on the reliability of the objective mea-
sure. Tone-excited and noise-excited vocoders were im-
plemented with 6, 12 and 24 channels. A third type of
vocoder was an FFT-analyzer 6-of-12 vocoder.
The remainder of this paper is organized as follows: Sec-
tion 2 describes the objective metrics which we used in
our experiments. The experimental setup is presented in
Section 3, whereas results and discussion are reported in
the Section 4. Conclusions are provided in Section 5.
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Fig. 1. Experimental steps used to assess the performance
of eight objective quality and intelligibility metrics on CI
data.

2. OBJECTIVE QUALITY AND
INTELLIGIBILITY METRICS

This section describes the eight SIPs used in the study.
These are divided into three groups: non-intrusive objec-
tive quality measures (NIOM), intrusive objective quality
measures (IOQM) and intrusive speech intelligibility mea-
sures (ISIM). While quality metrics have not been devel-
oped for the purpose of intelligibility prediction, in many
instances they can serve both purposes, as in [4] or [5].
For a full overview of the methods please see the diagram
in Fig.1.

2.1. Non-Intrusive Objective Quality Measures (NIOM)

Two NIOMs were investigated: the Speech to Reverbera-
tion Modulation Energy Ratio (SRMR) and the ITU-P563
standard algorithm. The non-intrusiveness refers to the
fact that these measures produce a quality prediction with-
out the need for a reference signal.

2.1.1. ITU P563

The P536 is the only non-intrusive measure so far tested
and approved by the ITU-T, which recommended it for
several test factors, coding technologies and applications.
It works by taking into account the effects of both trans-
mission level distortions and signal related distortions (e.g.
unnaturalness of speech, interruptions, robotic voice). As
will be recalled in the conclusion of this paper, the P563
measure is not recommended for synthesised speech, al-
tough in our simulation bitrate requirements were met.
For more information the interested reader is referred to
[6].

2.1.2. SRMR

Falk et al. [7] proposed a non-intrusive objective measure
of reverberation in speech based on estimation of spectral
modulation energy shift, across frequency, as a result of
late and early reflections. This measure - termed Speech
to Reverberation Modulation Energy Ratio (SRMR) - was
shown to outperform several standard measures designed
for perceived speech intelligibility, coloration and reverb

estimation. The SRMR is estimated as:

SRMR =

∑4
m=1

∑23
k=1 |F {ek(m,n)}|

2∑M
m=5

∑23
k=1 |F {ek(m,n)}|

2
(2)

where ek is the envelope of the filtered signal in critical
band k, F refers to the Fourier transform, and m is the
index of the M total modulation frequency bands. A de-
tailed description of the method is beyond the scope of
this paper and the interested reader is referred to [7][8] for
more details on the measure.

2.2. Intrusive Objective Quality Measures (IOQM)

Four intrusive objective quality measures were implemented:
the Perceptual Evaluation of Speech Quality (PESQ), an
optimised PESQ for reverberation (oPESQ), the Kullback-
Leibler divergence (KLD) and the Frequency-Weighted
Segmental Speech-to-Reverberation Ratio (FWSSRR).
All the intrusive measures described in this and the fol-
lowing section require a reference signal. Given that we
made the hypothesis of considering the vocoded speech
as representative of CI hearing, we chose the vocoded dry
signal (RT60 = 0) as reference. Nonetheless, it has been
shown that using the clean unprocessed speech as refer-
ence leads to same patterns in the results [4].

2.2.1. PESQ

The PESQ measure is probably the most reliable and em-
ployed objective predictor of speech sound quality [10].
It is recommended by ITU-T P.862 for speech quality as-
sessment of narrow-band handset telephony and narrow-
band speech codecs. The quality prediction is based on
a perceptual model which output is calculated as a linear
combination of two factors: the disturbance value (Dind)
and the average asymmetrical disturbance values (Aind).
Both factors are estimated by comparing the clean and the
processed signal and are integrated to form a final quality
rating according to:

PESQ = a0 + a1 ·Dind + a2 ·Aind, (3)

where

 a0 = +4.5
a1 = −0.1
a2 = −0.0309

(4)

2.2.2. oPESQ

The PESQ measure has been developed as a predictor of
speech sound quality when in presence of noise, but not
reverberation. As such, in [11] three different variations
of the PESQ measure were presented which were opti-
mised to correlate with reverberation perception of normal
hearing in the form of speech coloration, reverberation tail
effect and overall speech quality. In all three cases the op-
timised measure was obtained via multiple linear regres-
sion analysis to determine optimal a0, a1 and a2 parame-
ters in eq.3. In our study we implemented the optimised
PESQ for overall speech quality as a potential SIP, nam-
ing it oPESQ. The oPESQ is hence obtained from eq. (3)
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by using the coefficients as in [11]: a0 = +4.6876
a1 = −0.5678
a2 = +0.1024

(5)

2.2.3. KLD

First proposed in [12], the KLD measure was then suc-
cessfully implemented as a quality measure for reverber-
ation in [11]. The KLD estimates the distance between
the probability distribution functions (pdf ) of two signals;
in our case, the pdf of the clean and reverberant vocoded
speech. As an effect of the spectral and temporal smear-
ing produced by the reverberation, the pdf of the rever-
berant speech (pR) will always be more flat compared
with the pdf of the clean vocoded speech, pC . Hence,
the KLD measure is a non-negative measure which tends
to zero when the distributions become similar (it is zero if
pC = pR) and it is estimated as:

KLD = −
∫
pC(t) · log10

pC(t)

pR(t)
dt (6)

where the integration is over the time variable t.

2.2.4. FWSSRR

The FWSSRR measure is obtained by estimating the signal-
to-noise ratio for each time frame and for each critical
band. These values are then weighted according to fre-
quency weights published in (ANSI 1997 [9]) and aver-
aged along the whole time length of the signal. In our
study the FWSSRR was computed as:

FWSSRR =

10

N

N∑
n=1

∑K
k=1W (k) · log10

|C(n,k)|2

|C(n,k)−R(n,k)|2∑K
k=1W (n, k)

(7)

where C(n, k) and R(n, k) are respectively the clean and
reverberant vocoded speech signal in the time frame n,
and for the channel frequency k; K = 25 is the number of
critical bands,N is the total number of time frames,W (k)
is the weighting function as derived for the articulation
index (AI), and published in the standard ANSI 1997 [9].

2.3. Intrusive Speech Intelligibility Measures (ISIM)

The Normalised Covariance Metric (NCM) and the Co-
herence Speech Intelligibility Index (CSII) were also used.
The reason for chosing these two measures is that they
have been specifically developed to predict speech intel-
ligibility, although they were fitted to NH listeners and in
situations involving noise rather than reverberation. For
both the NCM and the CSII measure we have used the
vocoded dry speech as reference signal.

2.3.1. NCM

The NCM was implemented as in [13] and [4], where it
was shown to correlate well with intelligibility scores for
vocoded speech. The NCM is a Speech Transmission In-
dex (STI, [14]) related measure, where the essential dif-
ference from the STI being the fact that the NCM uses
the covariance of the envelope between clean and pro-
cessed signal, whereas STI measures use the differences in
their modulation transfer functions. For the NCM deriva-
tion the envelopes of clean and reverberant vocoded sig-
nals are first extracted via Hilbert transform for each of
the 25 channels, after filterbank analysis. The normalised
correlation coefficients between the respective envelopes
produce a local SNR which is then limited in the range
[−15, 15] dB, and linearly mapped in the range [0, 1]. These
values are then weighted in each channel according to
the articulation index (AI) weights published in the ANSI
(1997, [9]), and the average is taken as the final NCM
value. The formula to estimate the NCM is the following:

NCM =
10

N

N∑
n=1

∑K=25
k=1 W (fk) · [log10 r2ch

1−r2ch
][0,1]∑K=25

k=1 W (n, fk)
(8)

where rch is the correlation coefficient between the clean
and reverberant envelopes estimated in each channel; the
[ ][0,1] operator refers to process of limiting and mapping
into [0, 1] range. For more detailed information about how
this measure is calculated please refer to [4] or [15].

2.3.2. CSII

As opposed to the NCM, which is a temporal-based mea-
sure, the CSII is a spectral-based speech intelligibility mea-
sure [15]. It is calculated by multiplying coherence-based
weights to the processed speech in the frequency domain.
In order to do so, the signal is divided into N windowed
segments (30ms Hanning window with 75% overlap) and
its Fourier transform is computed. Each time-frequency
segment is weighted by the Magnitude Squared Coher-
ence (MSC) between the clean and reverberant signals es-
timated across the entire signal length. The mathematical
derivation of the CSII is as follows:

CSII = 10
N

∑N
n=1[log10 ·∑K=25

k=1 G(fk) ·MSC(fk) · |R(n, fk)|2∑K=25
k=1 G(fk) · (1−MSC(fk)) · |R(n, fk)|2

][0,1] (9)

where:

MSC(fk) =

∣∣∣∑N
n=1 C(n, fk)R

∗(n, fk)
∣∣∣2∑N

n=1 |C(n, fk)|
2∑N

n=1 |R(n, fk)|
2

(10)

and G(fk) is the frequency response of the f thk critical
pass-band filter (each filter has center frequency fk).
C(n, fk) andR(n, fk) are the FFT spectra of clean and re-
verberant signal, respectively, estimated in the time frame
n and channel k. As for the NCM, the [ ][0,1] operator
refers to process of limiting the argument in the range
[−15, 15]dB and successive mapping in the range [0, 1].
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Table 1. Vocoder Filterbank Specifics
CF = center frequency (Hz); BW = bandwidth(Hz)

6 CF 180 446 885 1609 2803 4773
Ch BW 201 331 546 901 1487 2453

12 CF 124 224 353 519 731 1005
Ch 1355 1806 2385 3128 4084 5310

BW 88 113 145 186 239 307
395 507 651 836 1074 1379

24 CF 101 145 194 251 315 387
Ch 469 562 668 787 923 1077

1251 1448 1671 1925 2212 2538
2906 3324 3798 4335 4944 5634

BW 41 47 53 60 68 77
87 99 112 127 144 163
185 210 238 269 305 346
392 444 503 571 647 733

3. EXPERIMENTAL SETUP

3.1. Data Preparation

A subset of speech sentences from the IEEE sentence list
[16] was convolved with room impulse responses (RIRs)
to obtain reverberated signals. The RIRs were artificially
created by using a RIR generator based on the image-
method [17]. This software allows a controlled manipula-
tion of the reverberation condition by changing the RT60
value. In our study we set the room dimension to be the
same as in [3] (4.5m x 5.5m x 3.10m) and we investigated
9 RT60 conditions (0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9, 1.0s,
1.5s and 2.0s) plus the dry condition (RT60 = 0). Thirty
sentences were used for each RT60 condition. The rever-
berant speech was then input to the three vocoders.

3.2. Vocoders Implementation

Vocoders have been widely used to simulate CI hearing.
Many studies have reported high correlations between the
intelligibility scores of CI users and NH with vocoded
speech when presented with the same speech sentences
(e.g. [18], [19]). In our study three different types of
vocoders were chosen to investigate their impact on the
ability of the different measures to predict speech intel-
ligibility. The first type of vocoder is the tone vocoder
(TV) as implemented in [18]. The signal processing in
this vocoder consists of a first band-pass filtering via a 6th

order Butterworth Ch-filterbank (analysis filterbank), with
Ch being the number of channels. The filterbank spans
the frequency range [80 − 6000] Hz, and each filter has
bandwidth as measured on an ERB scale. Following, the
envelope is extracted in each channel via half-wave rec-
tification and a low-pass filtering (2nd order Butterworth,
300Hz cut-off frequency or half the analysis bandwidth,
whichever the smallest). The envelope is then used to
modulate a sinusoidal carrier with frequency equal to the

centre frequency of the pass-band filter for that channel.
The outputs from each channel are then summed to pro-
duce the re-synthesised signal.
A second type of vocoder is the noise vocoder (NV). It
includes the same processing steps as the TV, except that
narrow-band noise (white noise filtered with the same anal-
ysis filterbank) is used as carrier instead of sinusoids. For
both vocoders three different channel values were tested:
6, 12 and 24 channels; this produced 6 conditions labelled
as TV6, TV12, TV24, NV6, NV12 and NV24 (see Table
1 for both centre frequencies and channel bandwidths).
Lastly, a third type of vocoder implemented is a FFT-
based vocoder with N-of-M channel selection. This vo-
coder follows similar processing stages as implemented
in the Digital Speech Processor (DSP) of the Neurelec
Digisonic SP (for more information see the implementa-
tion in [20]). The N-of-M is a peak selection criterion
routinely implemented in most CI, but rarely modeled in
vocoders; nonetheless, it has been shown that energy based
N-of-M channel selections can be detrimental for CI in
reverberant conditions [3]. This last vocoder was imple-
mented as noise and tone vocoder, with a 6-of-12 channel
selection (labels: TV6/12 and NV6/12).

4. EXPERIMENTAL RESULTS

4.1. Performance Metric

The performance of each SIP is evaluated in a per-condition
basis (i.e., all scores under the same RT60 condition are
averaged) using the Pearson’s correlation coefficient (ρ).
The measures estimate the sample correlation between the
speech intelligibility scores predicted by the objective mea-
sure, and the expected speech intelligibility scores in CI as
measured in [3] ( see eq.(1) of this document). This per-
formance metric is given by:

ρ =

∑
(Si − µSi

) ·
∑

(Ôi − µOi
)√∑

(Si − µSi
)2 ·
√∑

(Ôi − µOi
)2

(11)

where Oi is a 10-value array containing the speech intel-
ligibility values predicted by the objective measure i per
each RT60, and Si is the array containing the speech in-
telligibility values expected from (1); µOi and µSi are the
respective means.

4.2. Results and Discussion

Table 2 reports the Pearson’s correlation values averaged
per single vocoder condition (30 sentences per condition;
10 RT60 values in each condition per each measure per
each vocoder type), together with a visual matrix. These
results are indicative of how suitable to predict CI data
each measure is when coupled to a specific vocoder type
or number of channels.
From the results it can be observed that the ITU P563 per-
formed the worst, with an average absolute correlation of
0.667; in addition, correlations were instable across differ-
ent vocoder conditions.This result is consistent with what
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Table 2. Per-Vocoder Pearson’s (ρ) correlations.
TV=tone-excited vocoder; NV = noise-excited vocoder.

Vocoder: TV TV TV NV NV NV TV NV Correlation Matrix
Ch: 6 12 24 6 12 24 6/12 6/12 ρ

P563 0.697 -0.474 -0.658 0.859 0.910 0.884 -0.547 -0.320

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8SRMR 0.988 0.990 0.995 0.989 0.992 0.986 0.996 0.998
PESQ 0.946 0.939 0.954 0.884 0.891 0.899 0.927 0.879
oPESQ 0.983 0.991 0.988 0.987 0.987 0.991 0.999 0.991
FWSSRR 0.992 0.991 0.995 0.927 0.935 0.950 0.975 0.942
KLD 0.909 0.914 0.917 0.856 0.861 0.864 0.884 0.848
NCM 0.999 0.999 0.999 0.964 0.965 0.964 0.997 0.977
CSII 0.987 0.989 0.995 0.836 0.843 0.851 0.962 0.894

was found in [21], where the P563 was shown to perform
poorly with synthesized speech. The poor performance of
the ITU P563 is also shown in Fig.2, where the Ôi val-
ues of three SIPs and the expected CI scores are reported.
For this plot eachOi array has been scaled in the range [0,
Si(0)], where Si(0) is the value in eq. (1) for the anechoic
condition, which is 92.57%.
Except the P563 measure, all the other SIPs showed to
predict well the degradation introduced by reverberation,
with an average correlation coefficient of 0.94. The two
intrusive speech intelligibility indices (NCM and CSII)
performed very well for tone vocoders (both 0.99 on aver-
age), while showing somewhat poorer performance with
noise vocoders. Same trend is observed with the intrusive
quality objective measures KLD, FWSSRR and PESQ.
The reason for this is probably due to the fact that noise
vocoders introduce their own noise-envelope: these ran-
dom fluctuations reduce the similarity between the refer-
ence and the processed signal.
In contrast, oPESQ and SRMR seem to be the most robust
measures, showing high correlation across all vocoder con-
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Fig. 2. Comparison between the predicted outputs of three
different measures (Ôi, with i = SRMR, NCM or P563)
and the expected values in CI (continuous line). Results
are obtained by scaling and averaging all TV conditions.

ditions. The SRMR (average ρ=0.992) is a particularly
interesting metric, as it does not depend on a reference
signal, thus can be used for real-time quality and intelli-
gibility monitoring applications (e.g., in a quality-aware
enhancement algorithm). The good performance of the
SRMR can be explained by the fact that the it estimates
the reverberation content only by using the envelope of
the filter-bank output, regardless of the value obtained for
the quiet condition, and discards time information (i.e. the
fine structure contained in the original signal is not used).
This processing is very similar to what is performed in a
CI. The NCM metric works in a similar manner (but with a
reference signal) and also results in reliable scores across
the different conditions. Moreover, the oPESQ measure
performed better than the PESQ in conditions involving
reverberation (mean correlation values of 0.915 and 0.989
respectively), thus suggesting that an optimized mapping
is indeed needed to estimate the intelligibility of reverber-
ant speech for CI users.
With respect to the vocoder specifics, the N-of-M pro-
cessing had negligible impact on the SIPs performance,
whereas the tone/noise carrier selection had the largest im-
pact on all but SRMR and oPESQ measures. Within the
noise/tone vocoder groups, however, the number of chan-
nel did not show noticeable effect on the SIPs’ outcome.
Since this is a preliminary study, we made two assump-
tions: the first assumption is about the existence of a mea-
sure of speech intelligibility that, as being objective, would
be independent of subject-specific cognitive factors; there-
fore we should be careful in considering these measures as
estimators of absolute performance. In fact, they are rather
predictors of relative performance degradation across dif-
ferent RT60 values.
The second assumption is on the generalization of our re-
sults to reverberant environments. The estimated SIP per-
formances may be dependent on how we define reverber-
ation. In our study and in the study where CI data was
collected ([3]), the RT60 was the only factor defining the
reverberation. However, other factors such as the Signal to
Reverb Ratio (SRR) or the exact room dimensions might
also affect the speech intelligibility, thus further study is
required to determine the impact of additional parameters.
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5. CONCLUSION

This study has tested an objective procedure for predict-
ing speech intelligibility for cochlear implant users (CI)
in reverberant environments and evaluated several objec-
tive measures for this task. Amongst all, two measures
stood out, namely oPESQ and SRMR, which showed sta-
ble and high correlation scores regardless of the condition
tested. It was found that while vocoder type played a role
in the performance of the tested metrics, the number of
vocoder channels had little effect on the majority of the
measures (except P.563). Further study is needed to assess
the robustness of these results across other intelligibility-
impairing conditions (e.g., room dimensions, speaker - lis-
tener distance, reverberation-plus-noise).
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