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Abstract splines (MARS) [1]. We model the joint density of these

Objective speech quality assessment algorithms provide Iow-cofﬁf’Jltures (x) with the Sl_Jb]eCt'Ve MOS _(Y) as a Gaussian
and online monitoring of voice calls, replacing costly and time-m'x,ture' We then use this T“O‘?'e' to derive the le.aSI Squares
consuming subjective listening tests. We propose a novel approa&?t'matevE[ymv of the subjective MOS value. Simulations
to objective speech quality measurements using Gaussian mixtur%hOW that our approach outperforms PESQ.
models (GMMs). A large pool of perceptual distortion features is
extracted from speech files and multivariate adaptive regression II. GAUSSIAN MIXTURE MODELS
splines (MARS) is used to sift out the most relevant variables from ) ) o )
the pool. The five most salient variables are used to construct A Gaussian mixture density is a weighted sum of M

good GMM estimators of subjective listening quality. SimulationCOMPONent densities

results show that this novel approach outperforms the state-of-the- M
art objective measurement algorithm, PESQ. (Ui, 2,p) = Zpi-bi(u) (1)
1=1
. INTRODUCTION whereu is an N-dimensional vectoh;(u), i = 1,..., M are

The evaluation of speech quality is of critical importancthe mode densities ang > 0,i = 1,..., M are the mixture
in today’s telephone networks, be it POTS, wireless or VolReights, such tha[ﬁlpi = 1. Each mode density is a K-
mainly because quality is a key determinant of customeariate Gaussian function with mean vectqrand covariance
satisfaction. Traditionally, the only way to measure the pematrix 2;. Gaussian mixture densities are, thus, parameterized
ception of quality of a speech signal was through the uy three components: the mean vectors, covariance matrices
of subjective testing, i.e, a group of qualified listeners amnd mixture weights. By varying the number of Gaussiads,
asked to score the speech they just heard according t@rwl the three components one can, in principle, approximate
scale from 1 to 5, where 1 corresponds to unsatisfactoapy complex probability density function, to an arbitrary
speech quality with very annoying and objectionable levels atcuracy.
distortion and 5 corresponds to excellent speech quality andSince the Gaussian Mixture model uses a discrete set of
imperceptible level of distortion. The average of these scoréswussian functions, each with their own mean and variance,
is the subjective mean opinion score, MOS. This has beitns expected that the GMM have several different forms,
the most reliable method of speech quality assessment butépending on the shapes of their covariance matrices. The
is highly unsuitable for online monitoring applications and itwo most widely used forms are full and diagonal covariance
also very expensive and time consuming. Due to these reasanairices. The full covariance matrix is the most powerful
models were developed to identify audible distortions througbaussian model, as it fits the data best. The drawback is the
an objective process based on human perception. Objecti@et that it needs lots of data to properly estimate parameters
methods can be implemented by computer programs and eend it becomes costly in high-dimensional feature spaces. If
be used in real time monitoring of speech quality. Algorithm& is the dimension of the feature vector ahfithe number of
for objective measurement of speech quality assessment h@aissian components, then the number of parameters that have
been implemented and the International Telecommunicatidiesbe estimated during training is given B§ (K2 + 3K +2).
Union has promulgated ITU-T P.862 standard, also known asOn the other hand, diagonal covariance matrices are a good
Perceptual Evaluation of Speech Quality (PESQ), as its statempromise between quality and model size. In this case,
of-the-art algorithm. the total number of parameters that need to be estimated

In this paper we propose a novel method of speech qualdyring training is given byM (2K + 1). This type is widely
assessment based on Gaussian mixture models. First a larged in practice and mainly due to the fact that, since the
pool of feature measurements is created from the distorti@aussian components are acting together to model the overall
surface between the original speech signal and the degrageabability density function, a linear combination of diagonal
speech signal. Good features are then selected using a staariance Gaussians is capable of modelling the correlations
tistical data mining method, multivariate adaptive regressidretween the feature vectors [2].



In this study both cases are considered and the EM I1l. EXPERIMENTAL RESULTS

(expectation-maximization) algorithm [3] is used for estima- ]
tion of the weights, means and covariances of the Gaussiari’€r® We compare our algorithm to the current state-of-the-

components. art algorithm for voice quality estimation, PESQ, using MOS
labelled speech databases. The performance of the algorithm
A. GMM for Objective Speech Quality Assessment is based on the correlation (R) between the subjective MOS

. . and the predicted MOS. The root mean squared error (RMSE)
clnssiyng perceptual distortions under a vanety of contexis, U524 (0 8S5ESS the MOS measurement acouracy
gp b y "The speech databases include seven multilingual databases

First, the signals are frequency decomposed into 7 bands . .
The distortion between the decomposed clean and degrque!jT.U'T P-_ser.|es Sgpplement 23, two wireless d@tabases and
mixed wireline-wireless database. We combine these ten

speech signals is then found. Cognitive mapping is achieved .
by aggregating cognitively similar distortion events throug atabases into a global database and then use 10-fold cross

time segmentation and distortion severity classification. Ti yglidation. The global database is randomly divided into 10

m i - o
: o gy “.deata sets of almost equal size. Training and testing is thus
segmentation fabels the speech frames as "active’ of Derformed 10 times, where, each time, one of the data sets
active”. Active frames are further classified into voiced of ' ' !

unvoiced. Distortion severity classification labels the totgai r\;etsraeilrs]ir?gtesséttsgai?\d dt;[Z rseengrlcgsgazrg f:sr?ts) Igtegntl?/ ‘Z?]r(\:/:
istortion of h fram “low”, “medium” or “high” s ; )
distortion of each frame as “low”, “medium” o gh” by The ten resulting R's and RMSE's are averaged to obtain the

means of simple thresholding. Distortion samples in tlm%_ross-validation R and RMSE.

frequency bins are thus labelled according to its frequency ! )
As mentioned previously, the parameters of the GMM

band, time-segmentation type, and severity level. il b . 4 via th lqorith h . :
Additional contexts are created where each subband Ll Pe estimated via the EM algorithm. Each EM iteration

further labelled with the rank order obtained by ranking th@uarantee’s a monotonic increase in the model's likelihood
7 distortions in a frame in the order of decreasing magrki©9 lIkelihood) value. It is known that the EM algorithm
tude. Weighted mean and root-mean distortions, probability 5f"Verges to a maximum likelihood but has a few drawbacks:
each frame type and the lowest-frequency band and highéglj-S a gregdy algquthm and since the likelihood c_)f GMMs
frequency band energy of the clean speech frames are AL not unimodal '_t may converge to a local maximum and
used to form a pool of 209 candidate features. not th_e globgl_ma_xm_um. This makes the EM algorithm very
We use statistical data mining to find underlying patterns SENSitive to initialization and may converge to the boundary

relationships in the data sets and to sift out the most relev&itthe parameter space where the likelihood is unbounded,

variables from a large pool of candidate variables. We use fgading to meaningless estimates.

top-5 most important feature variables as ranked by MARS.Here the k-meansalgorithm is used to find the initial
We model the joint density of these features (x) with thBarameters. It partitions the data inié subsets, each subset
subjective MOS (y) as a Gaussian mixture model. The go%.(p_pulatlng a region in the feature space. The emp|r.|cal proba-
is to predict the values of the subjective MOB,given the bility of each subset becomes the initial mixture weights. The
observed values of the-dimensional feature vectax, To use Mean of the data in each subset becomes the initial mean of

GMM’s as regressors, the best least squares estimatgioén the corresponding mixture kernel and the covariance of the
2, namely E[y|z], is derived [5]: data of each subset determines the initial covariance of the

. . respective component.
Elylz] = /dy y plylz) = Jdyyply,2) _ Jdyyp.2)  The performance results for the feature variables selected

p(z) ~ Jdy ply, ) by MARS are shown in Table I. Diagonal GMMstands for
M ” N . a Gaussian mixture model with components and diagonal
= Z hi(z)[p; + 5755 (z — pf)] (2)  covariance matrices. Percentage Increase/Decrease shows the
i=1

performance improvement over PESQ. As can be seen, small

where h;(z) denotes the probability that thé" Gaussian improvement in R is achieved when using diagonal GMMs. On
component of the marginal predictor densjtiiz) generated the other hand, an average of 12.31% improvement in RMSE
the vectorz and is given by: is achieved. This occurs because some of the features selected

Wexp (—2(z—p))"SF" o — i) by MARS have significant _correlation amongst them and the
= TN P erp (— Lz — p)TSE (z — m))- (3) use of a small amount of diagonal Gaussian components does

k=1 [ope 172 PP A3 Hie)™ =k H not compensate for this. When looking at the graph of the
The superscriptgy and z denote vectors belonging to theobjective MOSversussubjective MOS we see the penalty of
response and the predictor variables, respectively. The covaiging diagonal matrices (vide Fig. 1). The prominent vertical
gE?Z ¥y alignment of points suggests that full covariance matrices are

7Y yee J

ance matrix for the*® component is2; = . . . N >
P ! needed, in order to predict the residual variation in subjective

. . X i 7.
If the covariance matrices are restricted to be diagonal, thgys, with full covariance matrices the number of parameters

least squares estimate simplifies to that need to be estimated scales quadratically with the input
M dimension. When dealing with limited data, as in our case,

Elylz] = Z hi(x) (4) severe problems arise due to singularities and local maxima in

i=1 the log-likelihood function. Many regularization schemes have



TABLE |
PERFORMANCE COMPARISON FORMARS SELECTED VARIABLES

R Percentage Increase (%) RMSE | Percentage Decrease
PESQ 0.8185 N/A 0.460 N/A
Diagonal GMM-3 | 0.8086 -1.21 0.4094 11.01
Diagonal GMM-4 | 0.8232 0.57 0.4008 12.86
Diagonal GMM-5 | 0.8377 2.34 0.3971 13.67
TABLE Il

PERFORMANCE COMPARISON FORMARS SELECTED VARIABLES

R Percentage Increase (%) RMSE | Percentage Decrease
PESQ 0.8185 N/A 0.460 N/A

Full GMM-2 | 0.8683 6.10 0.3773 17.52

Full GMM-3 | 0.8780 6.35 0.3783 17.98
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Fig. 1. Objective MOSrersusSubjective MOS for MARS-selected featuresFig. 2. Objective MOSrersusSubjective MOS for MARS-selected features
using four diagonal Gaussian components. using three full Gaussian components.

been proposed to improve the smoothness and generalizagiahient feature variables selected by the data mining technique

properties of the estimated density function. Here we limit thgere correlated and the use of only five diagonal Gaussian

spectral dynamic range by adding a small diagonal matriggmponents was not enough to compensate for this. Still, if

namely el, ., 10 each covariance matrix in each M-steglata is limited, diagonal components can be used with an

iteration of the EM algorithm. Typically, the optimal valueaverage improvement in RMSE of 12.31%.

for € is not known a priori. The simplest procedure, and the In the case a larger dataset is available, one is motivated to

one used in [6] is to vary over a range of values and chooseise full Gaussian components as we have shown an average

the one that leads to the best performance on the validatiofprovement over PESQ of 6.22% and 17.72% in R and

set. We varied from 0.000001 to 1 and the value that led t&RMSE respectively.

best performance was= 0.001.
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