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Abstract

Objective speech quality assessment algorithms provide low-cost
and online monitoring of voice calls, replacing costly and time-
consuming subjective listening tests. We propose a novel approach
to objective speech quality measurements using Gaussian mixture
models (GMMs). A large pool of perceptual distortion features is
extracted from speech files and multivariate adaptive regression
splines (MARS) is used to sift out the most relevant variables from
the pool. The five most salient variables are used to construct
good GMM estimators of subjective listening quality. Simulation
results show that this novel approach outperforms the state-of-the-
art objective measurement algorithm, PESQ.

I. I NTRODUCTION

The evaluation of speech quality is of critical importance
in today’s telephone networks, be it POTS, wireless or VoIP,
mainly because quality is a key determinant of customer
satisfaction. Traditionally, the only way to measure the per-
ception of quality of a speech signal was through the use
of subjective testing, i.e, a group of qualified listeners are
asked to score the speech they just heard according to a
scale from 1 to 5, where 1 corresponds to unsatisfactory
speech quality with very annoying and objectionable levels of
distortion and 5 corresponds to excellent speech quality and
imperceptible level of distortion. The average of these scores
is the subjective mean opinion score, MOS. This has been
the most reliable method of speech quality assessment but it
is highly unsuitable for online monitoring applications and is
also very expensive and time consuming. Due to these reasons,
models were developed to identify audible distortions through
an objective process based on human perception. Objective
methods can be implemented by computer programs and can
be used in real time monitoring of speech quality. Algorithms
for objective measurement of speech quality assessment have
been implemented and the International Telecommunications
Union has promulgated ITU-T P.862 standard, also known as
Perceptual Evaluation of Speech Quality (PESQ), as its state-
of-the-art algorithm.

In this paper we propose a novel method of speech quality
assessment based on Gaussian mixture models. First a large
pool of feature measurements is created from the distortion
surface between the original speech signal and the degraded
speech signal. Good features are then selected using a sta-
tistical data mining method, multivariate adaptive regression

splines (MARS) [1]. We model the joint density of these
features (x) with the subjective MOS (y) as a Gaussian
mixture. We then use this model to derive the least squares
estimate,E[y|x], of the subjective MOS value. Simulations
show that our approach outperforms PESQ.

II. GAUSSIAN M IXTURE MODELS

A Gaussian mixture density is a weighted sum of M
component densities

p(u|µ, Σ, p) =
M∑

i=1

pi.bi(u) (1)

whereu is an N-dimensional vector,bi(u), i = 1, ..., M are
the mode densities andpi ≥ 0, i = 1, ...,M are the mixture
weights, such that

∑M
i=1 pi = 1. Each mode density is a K-

variate Gaussian function with mean vectorµi and covariance
matrix Σi. Gaussian mixture densities are, thus, parameterized
by three components: the mean vectors, covariance matrices
and mixture weights. By varying the number of Gaussians,M ,
and the three components one can, in principle, approximate
any complex probability density function, to an arbitrary
accuracy.

Since the Gaussian Mixture model uses a discrete set of
Gaussian functions, each with their own mean and variance,
it is expected that the GMM have several different forms,
depending on the shapes of their covariance matrices. The
two most widely used forms are full and diagonal covariance
matrices. The full covariance matrix is the most powerful
Gaussian model, as it fits the data best. The drawback is the
fact that it needs lots of data to properly estimate parameters
and it becomes costly in high-dimensional feature spaces. If
K is the dimension of the feature vector andM the number of
Gaussian components, then the number of parameters that have
to be estimated during training is given byM

2 (K2 +3K +2).
On the other hand, diagonal covariance matrices are a good

compromise between quality and model size. In this case,
the total number of parameters that need to be estimated
during training is given byM(2K + 1). This type is widely
used in practice and mainly due to the fact that, since the
Gaussian components are acting together to model the overall
probability density function, a linear combination of diagonal
covariance Gaussians is capable of modelling the correlations
between the feature vectors [2].
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In this study both cases are considered and the EM
(expectation-maximization) algorithm [3] is used for estima-
tion of the weights, means and covariances of the Gaussian
components.

A. GMM for Objective Speech Quality Assessment

Motivated by the work of [4] we use an algorithm based on
classifying perceptual distortions under a variety of contexts.
First, the signals are frequency decomposed into 7 bands.
The distortion between the decomposed clean and degraded
speech signals is then found. Cognitive mapping is achieved
by aggregating cognitively similar distortion events through
time segmentation and distortion severity classification. Time
segmentation labels the speech frames as “active” or “in-
active”. Active frames are further classified into voiced or
unvoiced. Distortion severity classification labels the total
distortion of each frame as “low”, “medium” or “high” by
means of simple thresholding. Distortion samples in time-
frequency bins are thus labelled according to its frequency
band, time-segmentation type, and severity level.

Additional contexts are created where each subband is
further labelled with the rank order obtained by ranking the
7 distortions in a frame in the order of decreasing magni-
tude. Weighted mean and root-mean distortions, probability of
each frame type and the lowest-frequency band and highest-
frequency band energy of the clean speech frames are also
used to form a pool of 209 candidate features.

We use statistical data mining to find underlying patterns or
relationships in the data sets and to sift out the most relevant
variables from a large pool of candidate variables. We use the
top-5 most important feature variables as ranked by MARS.
We model the joint density of these features (x) with the
subjective MOS (y) as a Gaussian mixture model. The goal
is to predict the values of the subjective MOS,y, given the
observed values of the5-dimensional feature vector,x. To use
GMM’s as regressors, the best least squares estimate ofy given
x, namelyE[y|x], is derived [5]:

E[y|x] =
∫

dy y p(y|x) =
∫

dy y p(y, x)
p(x)

=
∫

dy y p(y, x)∫
dy p(y, x)

=
M∑

i=1

hi(x)[µy
i + Σyx

i Σxx
i
−1(x− µx

j )] (2)

where hi(x) denotes the probability that theith Gaussian
component of the marginal predictor densityp(x) generated
the vectorx and is given by:

hi(x) =

pi

|Σxx
i |1/2 exp

(− 1
2
(x− µx

i )T Σxx
i
−1(x− µx

i )
)

∑M
k=1

pk

|Σxx
k
|1/2 exp

(− 1
2
(x− µx

k)T Σxx
k
−1(x− µx

k)
) . (3)

The superscriptsy and x denote vectors belonging to the
response and the predictor variables, respectively. The covari-

ance matrix for theith component isΣi =
(

Σyy
i Σyx

i

Σxy
i Σxx

i

)
.

If the covariance matrices are restricted to be diagonal, the
least squares estimate simplifies to

E[y|x] =
M∑

i=1

hi(x)µy
i . (4)

III. E XPERIMENTAL RESULTS

Here we compare our algorithm to the current state-of-the-
art algorithm for voice quality estimation, PESQ, using MOS
labelled speech databases. The performance of the algorithm
is based on the correlation (R) between the subjective MOS
and the predicted MOS. The root mean squared error (RMSE)
is used to assess the MOS measurement accuracy.

The speech databases include seven multilingual databases
in ITU-T P-series Supplement 23, two wireless databases and
a mixed wireline-wireless database. We combine these ten
databases into a global database and then use 10-fold cross
validation. The global database is randomly divided into 10
data sets of almost equal size. Training and testing is thus
performed 10 times, where, each time, one of the data sets
serves as a test set and the remaining 9 are combined to serve
as a training set. Each data set serves as a test set only once.
The ten resulting R’s and RMSE’s are averaged to obtain the
cross-validation R and RMSE.

As mentioned previously, the parameters of the GMM
will be estimated via the EM algorithm. Each EM iteration
guarantee’s a monotonic increase in the model’s likelihood
(log likelihood) value. It is known that the EM algorithm
converges to a maximum likelihood but has a few drawbacks:
it is a greedy algorithm and since the likelihood of GMMs
are not unimodal it may converge to a local maximum and
not the global maximum. This makes the EM algorithm very
sensitive to initialization and may converge to the boundary
of the parameter space where the likelihood is unbounded,
leading to meaningless estimates.

Here the k-meansalgorithm is used to find the initial
parameters. It partitions the data intoM subsets, each subset
populating a region in the feature space. The empirical proba-
bility of each subset becomes the initial mixture weights. The
mean of the data in each subset becomes the initial mean of
the corresponding mixture kernel and the covariance of the
data of each subset determines the initial covariance of the
respective component.

The performance results for the feature variables selected
by MARS are shown in Table I. Diagonal GMM-i stands for
a Gaussian mixture model withi components and diagonal
covariance matrices. Percentage Increase/Decrease shows the
performance improvement over PESQ. As can be seen, small
improvement in R is achieved when using diagonal GMMs. On
the other hand, an average of 12.31% improvement in RMSE
is achieved. This occurs because some of the features selected
by MARS have significant correlation amongst them and the
use of a small amount of diagonal Gaussian components does
not compensate for this. When looking at the graph of the
objective MOSversussubjective MOS we see the penalty of
using diagonal matrices (vide Fig. 1). The prominent vertical
alignment of points suggests that full covariance matrices are
needed, in order to predict the residual variation in subjective
MOS. With full covariance matrices the number of parameters
that need to be estimated scales quadratically with the input
dimension. When dealing with limited data, as in our case,
severe problems arise due to singularities and local maxima in
the log-likelihood function. Many regularization schemes have
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TABLE I

PERFORMANCECOMPARISON FORMARS SELECTED VARIABLES

R Percentage Increase (%) RMSE Percentage Decrease
PESQ 0.8185 N/A 0.460 N/A

Diagonal GMM-3 0.8086 - 1.21 0.4094 11.01
Diagonal GMM-4 0.8232 0.57 0.4008 12.86
Diagonal GMM-5 0.8377 2.34 0.3971 13.67

TABLE II

PERFORMANCECOMPARISON FORMARS SELECTED VARIABLES

R Percentage Increase (%) RMSE Percentage Decrease
PESQ 0.8185 N/A 0.460 N/A

Full GMM-2 0.8683 6.10 0.3773 17.52
Full GMM-3 0.8780 6.35 0.3783 17.98
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Fig. 1. Objective MOSversusSubjective MOS for MARS-selected features
using four diagonal Gaussian components.

been proposed to improve the smoothness and generalization
properties of the estimated density function. Here we limit the
spectral dynamic range by adding a small diagonal matrix,
namely εIn×n, to each covariance matrix in each M-step
iteration of the EM algorithm. Typically, the optimal value
for ε is not known a priori. The simplest procedure, and the
one used in [6] is to varyε over a range of values and choose
the one that leads to the best performance on the validation
set. We variedε from 0.000001 to 1 and the value that led to
best performance wasε = 0.001.

Table II shows the performance improvements by using
full covariance matrices. Now an average 6.22% and 17.72%
improvement in R and RMSE, respectively, is achieved. If we
look at the graph of the objective MOSversussubjective MOS
(vide Fig. 2) we see that the estimates no longer are aligned
with the axis, i.e. the correlation between the predictor and
the response variables have been properly modelled.

IV. CONCLUSION

A novel objective speech quality measurement algorithm
is proposed based on Gaussian mixture models. When using
diagonal Gaussian components we have shown that our ap-
proach outperforms PESQ in RMSE but the improvement in
R is smaller. This was attributed to the fact that the five most
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Fig. 2. Objective MOSversusSubjective MOS for MARS-selected features
using three full Gaussian components.

salient feature variables selected by the data mining technique
were correlated and the use of only five diagonal Gaussian
components was not enough to compensate for this. Still, if
data is limited, diagonal components can be used with an
average improvement in RMSE of 12.31%.

In the case a larger dataset is available, one is motivated to
use full Gaussian components as we have shown an average
improvement over PESQ of 6.22% and 17.72% in R and
RMSE respectively.
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