
NON-INTRUSIVE OBJECTIVE SPEECH QUALITY AND INTELLIGIBILITY PREDICTION
FOR HEARING INSTRUMENTS IN COMPLEX LISTENING ENVIRONMENTS

Tiago H. Falk1, Stefano Cosentino2, João Santos1, David Suelzle3, and Vijay Parsa3

1INRS-EMT, University of Quebec, Montreal, QC, Canada
2Ear Institute, University College London, London, UK

3University of Western Ontario, Electrical and Computer Eng., London, ON, Canada

ABSTRACT

A non-intrusive objective speech quality and intelligibil-
ity measure tailored to hearing restoration instruments is
proposed and evaluated in complex listening environments.
The measure builds upon the previously-proposed “speech-
to-reverberation modulation energy ratio” (SRMR) by in-
corporating hearing impairment percepts, such as hearing
loss thresholds and altered modulation frequency selectiv-
ity. Performance is assessed using speech data corrupted by
additive noise, reverberation, and noise-plus-reverberation
which were subjectively rated by cochlear implant and hear-
ing aid users. Experimental results show that the developed
measures outperform the original SRMR metric for hearing
impaired listeners and achieve performance levels inline with
existing intrusive quality and intelligibility metrics, but with
the advantage of not requiring access to a clean reference
signal. As such, the measure may be used to develop quality-
or intelligibility-aware speech enhancement algorithms for
advanced hearing restoration instruments.

Index Terms— Cochlear implant devices, hearing aids,
quality measurement, intelligibility prediction, reverberation

1. INTRODUCTION

According to 2005 estimates from the World Health Organi-
zation, 278 million people worldwide had moderate to pro-
found hearing loss in one or both ears. Depending on the de-
gree of hearing impairment, these subjects can become candi-
dates for hearing aid (HA) or cochlear implant (CI) devices.
Recently, a number of factors, such as aging population, en-
largement of candidacy criteria, and technological advances
have drawn great attention to HA and CI research and devel-
opment. Ultimately, users of these hearing restoration instru-
ments are interested in obtaining improved quality and intel-
ligibility, particularly in noisy and reverberant environments.
As such, current research has focused on the development of
speech enhancement techniques (e.g., noise suppression, echo
cancellation) to meet this demand [1, 2, 3, 4]. To assure that
the developed algorithms are behaving as expected, quality
and intelligibility monitoring has to be performed.

Traditionally, subjective tests have been used to assure
that acceptable levels of speech quality and intelligibility
are attained. For CI devices, two approaches are commonly
taken. The first makes use of vocoded speech to simulate
CI hearing and presents vocoded speech to normal hearing
(NH) listeners for identification (e.g., [5]). The second ap-
proach is more direct and presents degraded (or enhanced)
speech stimuli directly to hearing impaired (HI) CI users for
analysis (e.g., [6]). For HA users, this latter approach has
been commonly used to investigate the effects of various HA
signal processing techniques, such as noise suppression and
feedback cancellation on the perceived speech quality [3, 4].

Subjective testing, however, is laborious, time-consuming,
and expensive. Speech enhancement algorithm developers,
on the other hand, require a solution that is fast and in-
expensive, such that different algorithmic parameters can
be optimized throughout the development stage to improve
speech quality/intelligibility. Automated, repeatable, fast,
and cost-effective quality/intelligibility monitoring can only
be obtained with objective metrics, which replace the listeners
with an auditory-inspired computational algorithm. Objective
metrics can be further classified as intrusive or non-intrusive
depending on the need for a clean reference signal or not,
respectively. While significant effort has been placed in de-
veloping objective measures for telephone bandwidth speech
with NH listeners [7], little effort has been made to date to
develop objective tools targeted towards CI/HA users. In this
paper, one such non-intrusive tool is proposed which incor-
porates hearing loss and hearing instrument precepts directly
into the metric. Experiments with noisy and reverberant
speech data show that the performance of the proposed non-
intrusive measure is inline with that obtained with existing
state-of-the-art intrusive measures, but with the added ben-
efit of not requiring a clean reference signal, which is often
unavailable in practical everyday situations.

The remainder of this paper is organized as follows. Sec-
tion II will describe previous objective metrics proposed for
HI listeners. Section III describes the proposed algorithm,
Sections IV and V present the experimental setup and results,
respectively, and Section VI concludes the paper.
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2. PREVIOUS WORK

As mentioned previously, limited work has been done to de-
velop objective speech quality and intelligibility metrics opti-
mized for hearing restoration instruments. For HA devices, a
handful of intrusive objective quality metrics have been devel-
oped, such as the Hearing Aid Speech Quality Index (HASQI)
[8, 9] and the so-called HA “auditory distance” parameter
[10]. The HASQI uses a sensorineural hearing loss model
to derive a set of perceptually-relevant features from HA-
processed signal and its clean reference counterpart. HASQI
has been validated under various simulated HA conditions
[8]. The auditory-distance parameter, in turn, models the HA
response using a time-varying ARMA system and the dis-
tance between the HA response and the model output is used
to quantify the amount of distortion in the hearing aid. The
model was validated with HI listeners, but not under complex
listening situations with speech enhancement. Alternately,
existing intrusive standardized algorithms originally devel-
oped for NH listeners (e.g., ITU-T PESQ) have also been
modified to account for impaired listening, but the obtained
results have not been satisfactory [11]. In terms of intelligibil-
ity, variants of conventional measures such as the articulation
index have been used (e.g., [12]). To the best of the authors’
knowledge, non-intrusive signal-based quality or intelligibil-
ity metrics do not exist for hearing aid users.

For CI devices, objective speech quality models have yet
to be developed and recent studies with existing intrusive
measures (e.g., PESQ) have resulted in poor correlations with
subjective scores, both with normal hearing listeners using
vocoded speech to simulate CI hearing and with noisy speech
data presented directly to CI users [13, 14, 15]. On the other
hand, intelligibility prediction for CI users in complex listen-
ing scenarios is a more mature research area and tools such as
the normalized covariance metric (NCM) and the coherence-
based speech intelligibility index (CSII) have shown to be
fairly reliable indicators of intelligibility [14, 15]. As such,
emphasis is placed here on intelligibility prediction for CI
users. Interestingly, a recently-proposed non-intrusive speech
quality and intelligibility metric termed SRMR (speech to
reverberation modulation energy ratio) [16] showed promis-
ing results across noisy and reverberant conditions [14]. The
measure was originally developed for NH listeners and is
based on an auditory-inspired modulation spectral signal rep-
resentation. The objective of the present study is to improve
on the existing SRMR measure by incorporating hearing loss
and instrument insights into the modulation spectral auditory
model; this is performed for both CI and HA hearing models.

3. PROPOSED METRICS

3.1. Original SRMR Implementation

The SRMR non-intrusive metric was originally developed for
reverberant and dereverberated speech and evaluated against
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Fig. 1. Signal processing steps in the calculation of the origi-
nal (within dashed lines) and proposed objective metrics.

subjective NH listener data [16]. Here, only a brief descrip-
tion of the measure is given and the interested reader is re-
ferred to [16] for complete details. The block diagram de-
picted in Figure 1 (within the dashed lines) shows the signal
processing steps involved in the computation of the original
SRMR metric. First, the input speech signal is filtered by a
23-channel gammatone filterbank with filter center frequen-
cies ranging from 125 Hz to approximately half the sampling
frequency, and with bandwidths characterized by the equiv-
alent rectangular bandwidth [17]. Temporal envelopes are
then computed via the Hilbert transform for each of the 23
filterbank outputs and used to extract modulation spectral en-
ergy for each critical band via a discrete Fourier transform
(using 256 ms frames, 32ms shifts). In order to emulate fre-
quency selectivity in the modulation domain [18], modula-
tion frequency bins are grouped into eight overlapping mod-
ulation bands with centre frequencies logarithmically spaced
between 4− 128 Hz. Lastly, the SRMR value is computed as
the ratio of the average modulation energy content available
in the first four modulation bands (3− 20 Hz, consistent with
clean speech modulation content [19]) to the average mod-
ulation energy content available in the last four modulation
bands (20−160 Hz), which were previously shown to convey
room acoustics information [20].

3.2. SRMR Tailored to Hearing Instruments

In order to tailor the SRMR measure for CI and HA instru-
ments, a few modifications were implemented, as depicted
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by Fig. 1. For CI devices, the 23-channel gammatone filter-
bank was replaced by the 22-channel filterbank (with mel-
like spacing) available in the Nucleus research device which
was used by the listeners in the subjective test. Moreover,
the 4 − 128 Hz range of the eight modulation filterbank cen-
tre frequencies of the original SRMR metric were reduced to
4 − 64 Hz, following recent insights described in [13, 14].
The SRMR metric tailored to CI devices is henceforth refer-
eed to as SRMR-CI. Similarly, to simulate HA hearing, the
23-channel gammatone filterbank was modified to take into
account the listener’s individual hearing loss thresholds ob-
tained via an audiogram. More specifically, the Q-factor of
each of the 23 filters were adjusted to simulate the hearing
loss due to outer hair cell damage. In summary, as hearing
loss increased, so did the filter bandwidths (i.e., Q-factors de-
creased). Since there is no previous literature on modulation
domain frequency-selectivity for hearing aid users, the full
4− 128 Hz range of modulation filterbank centre frequencies
was kept. The SRMR metric tailored to HA devices is hence-
forth refereed to as SRMR-HA.

4. EXPERIMENTAL SETUP

Two separate datasets were used in our experiments. Both
comprised of anechoic speech data corrupted by recorded
room impulse responses with varying reverberation times and
by additive noise. One dataset was developed at the Univer-
sity of Texas at Dallas (USA) and presented to CI users in
a controlled listening test, whereas the other was collected
at the University of Western Ontario (Canada) and presented
to HA users. A brief summary of the two datasets is given
below; the interested reader is referred to [6, 21] for complete
details on the subjective listening test conditions.

4.1. Database 1: CI Speech Intelligibility

The speech sentences presented to the CI users were taken
from the well-known IEEE sentence corpus. Four recorded
room impulse responses were convolved with the clean
speech data to simulate reverberant speech with reverbera-
tion times (RT60) of 0.3, 0.6, 0.8, and 1 s. Speech-shaped
noise was also added to the anechoic and the reverberant
signals to generate noise-only and noise-plus-reverberation
degradation conditions, respectively. Noise was added at a
signal-to-noise-ratio (SNR) of -5, 0, 5 and 10 dB for the ane-
choic samples and 5 and 10 dB for the reverberant samples.
For the noise-plus-reverberation condition, the reverberant
signals served as reference for SNR computation.

Eleven adult CI users were recruited to participate in the
subjective intelligibility experiments. The participants were
all native speakers of American English with post-lingual
deafness and had an average age of 64 years. All participants
had a minimum of one year experience using their device
routinely, with some being bilaterally implanted for over 6

years. For consistency, all participants were temporarily fitted
with a SPEAR3 research processor with parameters matching
the individual CI user’s clinical settings. Participants were
presented with 20 sentences randomly selected from the IEEE
database, each corrupted by the above mentioned degrada-
tion conditions. Degraded stimuli were presented directly to
the audio input of the research processor and the level was
adjusted individually for comfort at the beginning of the ex-
periment. Listeners were instructed to repeat all identifiable
words and per-participant intelligibility scores were calcu-
lated as the ratio of the number of correctly identified words
to the total number of presented words.

4.2. Database 2: HA Speech Quality

The speech material presented to the HA users consisted
of the well-known HINT (hearing in noise test) sentences
presented to participants in a double-walled sound booth
(RT60=0.1 s) and in a reverberant chamber (RT60=0.9 s).
Both clean speech data and data corrupted by additive noise
(multi-talker babble and speech-shaped noise at 0 and 5 dB
SNR) were presented to listeners via four loudspeakers placed
within the room’s critical distances at 0◦, 90◦, 180◦, and 270◦

azimuths, thus simulating noise-only, reverberation-only, and
noise-plus-reverberation listening conditions.

Twenty-two adult HA users (average age of 71 years)
were recruited to participate in the subjective quality exper-
iments. Each of the participants were fitted bilaterally with
the Unitron experimental behind-the-ear HA. Participants
listened to the corrupted speech files four times, each time
with a different HA setting, namely: omnidirectional mi-
crophone, adaptive directional microphone, partial strength
speech enhancement enabled (directionality and noise reduc-
tion algorithms operating below their maximum strengths),
and full strength speech enhancement (all enhancement algo-
rithms operating at maximum strength). Subjects rated their
perceived quality for each stimulus using the well-known
[0 − 100] MUSHRA quality scale, with 0 referring to poor
quality and 100 to excellent. Lastly, the above mentioned data
collection protocol was repeated but with a head and torso
dummy equipped with the experimental HA programmed to
the individual listener’s hearing loss profile. This allowed
for the actual enhanced signals heard by the listeners to be
used by the benchmark and proposed SRMR-HA algorithms.
Since data was presented binaurally, the left and right channel
data were processed by the quality prediction algorithms and
the average was used for performance comparisons.

4.3. Benchmark Algorithms

In order to gauge the benefits of the proposed non-intrusive
measures, existing intrusive parameters were used as bench-
marks. For HA conditions, the recently-proposed and vali-
dated HASQI speech quality prediction parameter was used.
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The interested reader is referred to [8, 9] for its complete de-
scription. For CI conditions, in turn, two intrusive metrics
were used, namely the normalized covariance metric (NCM)
and the coherence-based speech intelligibility index (CSII).
These parameters have been shown to be reliable intelligibil-
ity indicators for CI hearing in noise and reverberation [14,
15, 13]. The NCM parameter estimates speech intelligibility
based on the covariance between the envelopes of the clean
and degraded speech signals, whereas the CSII parameter es-
timates speech intelligibility based on the spectral coherence
between the two signals (e.g., [22, 23, 24]).

4.4. Performance Metrics

In order to assess the performance of the tested algorithms,
two performance metrics were used, namely Pearson corre-
lation (R) and the standard deviation of the prediction error
(ε). As suggested in the literature, performance values are
reported on a per-condition basis, where condition-averaged
objective performance ratings and condition-averaged subjec-
tive intelligibility/quality ratings are used in order to reduce
intra- and inter-subject variability [7]. In the CI experiment,
thirteen conditions were available: clean, four noise-only
conditions (-5 to 10 dB SNR with 5 dB increments), four
reverberation-only conditions (RT60 = 0.3, 0.6, 0.8, 1.0 s),
and four noise-plus-reverberation conditions (RT60 = 0.6 and
0.8 s with SNR of 5 and 10 dB). In the HA experiment, 40
conditions were available: 2 RT60 levels × (4 HA settings ×
2 noise types × 2 SNRs + 4 HA settings in quiet).

5. RESULTS

Table 1 presents the performance metrics (R, ε) obtained by
the proposed and benchmark algorithms for the two datasets.
As can be seen, the promising results obtained with the
original SRMR measure provide further evidence of the im-
portance of temporal envelope cues for speech intelligibility
prediction in cochlear implants. Notwithstanding, further
improvements were obtained once CI precepts were incor-
porated into the metric. More specifically, gains of 3.2%
and 11.7% were obtained in R and ε, respectively with the
SRMR-CI parameter relative to the original SRMR. Overall,
the proposed SRMR-CI metric performed inline with the ex-
isting intrusive metrics, but with the benefit of not requiring
access to a clean reference. Further investigation into the
SRMR-CI estimates showed that the performance remained
stable across the noise-only, reverberation-only, and noise-
plus-reverberation conditions, thus signalling its usability
over a wide range of complex listening conditions.

For the HA database, in turn, the proposed SRMR-HA
measure achieved somewhat lower performance than the
benchmark HASQI algorithm. This drop in performance
may be compensated by the fact that the proposed metric
does not require access to a clean reference signal, thus is

Table 1. Overall per-condition performance metrics of pro-
posed and benchmark algorithms on the CI (Dataset 1) and
HA (Dataset 2) datasets

Database 1 Database 2

Metric R ε R ε

NCM 0.96 12.4 − −
CSII 0.93 10.6 − −

HASQI − − 0.95 5.4

SRMR 0.93 12.8 0.73 11.5
SRMR-CI 0.96 11.3 − −
SRMR-HA − − 0.84 9.2

better suited for real-time applications. Further investigation
into the SRMR-HA estimates showed that the performance
also remained stable across different conditions. Moreover,
it can also be observed that by incorporating hearing loss
information into the metric, significant improvements can
be obtained relative to the original SRMR measure; more
specifically, gains of 15% and 20% were obtained in R and
ε, respectively. Our ongoing work focuses on investigating
the effects of unwanted HA speech enhancement artefacts on
the modulation spectrum; these insights may lead to further
improvements in speech quality measurement performance.

6. CONCLUSIONS

This paper proposed a new non-intrusive speech quality and
intelligibility metric tailored towards hearing instruments for
complex listening environments. More specifically, mea-
sures were developed for cochlear implant and hearing aid
devices. The so-called SRMR-CI and SRMR-HA metrics,
respectively, were shown to accurately estimate speech qual-
ity/intelligibility across noise-only, reverberation-only and
noise-plus-reverberation listening conditions. The obtained
performance results were inline with those obtained with
state-of-the-art intrusive measures, but with the added benefit
of not requiring access to a clean reference signal. Ultimately,
access to a reliable non-intrusive speech intelligibility/quality
metric may open doors to intelligibility- and/or quality-aware
speech enhancement algorithms to improve speech-in-noise
recognition for hearing instrument users.
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