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ABSTRACT

In this paper, automatic speaker verification and gender detec-
tion using whispered speech is explored. Whispered speech,
despite its reduced perceptibility, has been shown to convey
relevant speaker identity and gender information. This study
compares the performance of a GMM-UBM speaker verifica-
tion system trained with normal and whispered speech under
different matched and mismatched conditions, and describes
the benefits of adaptation in a speaking-style independent mo-
del to handle both vocal efforts. It is shown that performance
improvements can be achieved by using speaking-style and
gender dependent models, as well as by adding features based
on the AM-FM signal representation. Moreover, the AM-FM
based features showed to be more discriminative than clas-
sical MFCCs for whispered speech gender detection. Experi-
mental results suggest that whispered speech carries sufficient
information for reliable automatic speaker identification.

Index Terms— Whispered speech, gender detection,
speaker verification, GMM, instantaneous frequency.

1. INTRODUCTION

Recent advances in speaker recognition technology have
focused attention on robustness to different noise or recor-
ding conditions and channel or microphone effects. However
there are still different research problems that have received
little attention, and require more effort to make advances to-
wards the understanding of speech communication. That is
the case when there are changes in the vocal effort, which ha-
ve proven to affect significantly the performance of automatic
speech recognition and speaker recognition systems [1, 2, 3].
Particularly, whispered speech exhibits significant differences
with normal phonated speech, being the main physical diffe-
rence the complete lack of vocal folds vibration. Furthermore
there are also changes in the vocal tract configuration, resul-
ting in formant shifts toward higher frequencies, especially
for the lower formants [4]. It is also well known that whis-
pered speech has gained great attention in applications whe-
re users want to protect the content of their spoken words,
e.g., in mobile telephone banking. However, despite the many
applications and documented properties of whispered speech

[5, 6, 7, 8], study of this particular vocal effort level is still
limited and more research is needed to explore its properties
and use in existing speech-enabled applications.

For automatic speaker recognition, Gaussian mixture mo-
del (GMM) based systems have become the dominant ap-
proach for text-independent speaker recognition using Maxi-
mum a Posteriori (MAP) adaptation and mel-frequency ceps-
tral coefficients (MFCC) as feature vectors [9, 10]. Literature
also shows that gender dependent models have better perfor-
mance than gender-independent ones, especially with gender-
unbalanced data. Notwithstanding, changes in vocal effort du-
ring the testing phase can result in significant reduction in
system performance. Despite efforts to address the mismatch
problem, recent studies have shown that the best solution is to
include small portions of whispered speech to adapt the mo-
dels [11, 2]. This strategy can improve significantly the per-
formance of recognition systems, thus allowing for normal
and whispered speech to be handled. Nevertheless, different
authors suggest that for optimal applications, it is better to ha-
ve dedicated models for each vocal effort and select the most
likely model according to the detected vocal effort [5, 3].

In this study, besides the classical MFCC features, we
explore two different approaches to characterize whispered
speech for speaker verification (SV) and gender detection.
Comparison of the characterization schemes is performed
using a standard SV system based on GMM and MAP adap-
tation in two scenarios: i) Speaking-style independent model,
using a fixed length of normal speech and variable length
of whispered speech for training and ii) Dedicated models
for whispered speech, using both gender independent and
dependent models. Our experimental results show that ac-
curate whispered-speech gender detection can be achieved
and systems based on AM-FM features outperform those ba-
sed on MFCCs. The developed speaker verification system
using only whispered speech and gender specific models was
shown to provide reliable accuracy, but additional efforts are
still needed in order to achieve performance figures inline
with those obtained with normally-phonated speech.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the SV system and feature representations.
Sections 3 and 4 present the experimental setup and results,
respectively. Lastly, conclusions are presented in Section 5.
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a)

b)

Fig. 1. a) General and b) gender-dependent SV systems.

2. SPEAKER VERIFICATION

This section describes the used SV system, as well as the
feature representations explored here.

2.1. Pre-processing and SV system

In our experiments, pre-processing consisted of down-
sampling the speech data to 8 kHz, normalizing to -26 dBov
(dB overload) using the ITU-T P.56 speech voltmeter [12],
and pre-emphasizing using a first order FIR filter with cons-
tant a = 0.97. For the recognition system, the classical M -
Gaussian universal background model (UBM) is constructed
using the Expectation Maximization (EM) algorithm and the
data available for training from all the speakers. Then a GMM
per speaker is obtained by using MAP adaptation [10], as de-
picted by Fig. 1 (a). The detection error tradeoff (DET) curve
is used for performance comparisons.

2.2. Feature extraction

For each speech recording, a sequence of N-dimensional
feature vectors X = {xxx1, · · ·xxxn, · · ·xxxT } were extracted,
where T represents the total number of frames in the recor-
ding, and xxxn the N-dimensional feature vector indexed at
discrete time n. Here, two feature sets were explored:

2.2.1. Mel-frequency cepstral coefficients (MFCC)

The speech signal s(n) is analyzed in short overlapping
frames, each frame is multiplied by a Hamming window befo-

re the FFT computation. Then a set of 24 triangular bandpass
filters spaced according to the Mel scale is used. Finally, the
cosine transform is applied to the log energies obtained from
the filter bank to obtain a set of cepstral coefficients. Only
the first 19 cepstral coefficients are employed for training and
testing. Dynamic or transitional features (∆ MFCC) derived
from the difference of cepstral coefficients are not included in
this study as they were shown to not provide advantage over
static features in mismatch conditions [2].

2.2.2. Weighted Instantaneous Frequencies (WIFs)

Recently the AM-FM model has shown to be powerful in
speaker recognition applications. The AM-FM model decom-
poses the speech signal to bandpass channels and characteri-
zes each channel in terms of its envelope and phase (instanta-
neous frequency) [13, 14]. To decompose the speech signal in
bandpass channels, the speech signal s(n) is filtered by a bank
of 23 critical-band gammatone filters [15, 16]. Filter center
frequencies range from 50 Hz to 3528 Hz and their band-
widths are characterized by the equivalent rectangular band-
width (ERB). Next, each analytic subband signal sk(n) is uni-
quely related to a real-valued bandpass signal yk(n), which is
the output of the k-th gammatone filter, by the relation:

sk(n) = yk(n) + j · ŷk(n), (1)

where ŷk(n) stands for Hilbert transform of yk(n). There are
two approaches to decompose each analytic signal in terms
of its envelope and phase: i) the Hilbert envelope approach
(non-coherent demodulation) and ii) coherent demodulation.
The main difference between these two approaches is in the
allocation of phase between the envelope and carrier. Whereas
the Hilbert envelope places all of the subband phase in the ca-
rrier, coherent demodulation makes the important distinction
between carrier and modulator phase.

For the sake of notation, let mk(n) denote the low–
frequency modulator and fk(n) the instantaneous frequency
for each bandpass signal, whose values can be calculated by
using either the Hilbert envelope approach or coherent demo-
dulation. Next the values of mk(n) and fk(n) are combined
to obtain the so called Weighted Instantaneous Frequencies
(WIFs) using a short time approach:

Fk =

n0+τ∑

i=n0

fk(i) ·m
2(i)

n0+τ∑

i=n0

m2(i)

, (2)

where τ is the length of the time–frame. Fk is calculated over
the full length of each mk(n) with increments of τ/2. Since
there are no published studies comparing each demodulation
approach for speaker recognition tasks, here both approaches
were investigated to test which better captures speaker and
gender specific information from whispered speech.
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3. EXPERIMENTAL SETUP

In our experiments the CHAINS Speech Corpus develo-
ped in [13] was used. This corpus contains the recordings of
36 speakers with three different accents: 28 speakers from Ire-
land (12 females, 16 males), 5 speakers from USA (3 females,
2 males) and 3 speakers from the United Kingdom (2 fema-
les, 1 male). The recordings were collected in two different
sessions, the first recording session was carried out in a pro-
fessional recording studio, whereas the second recording ses-
sion was carried out in a quiet office environment. Additional
details about the recording equipment can be found in [13].
In this particular study two speaking styles were used: nor-
mal speech, in which speakers read a prepared text alone at a
comfortable rate, and whispered speech where speakers read
the same prepared text but whispering. Material selected from
normal and whispered speech is used as follows: the first pa-
ragraph of the Rainbow Text for training (average duration of
30 seconds, minimum length approximately 23 seconds), and
a version of the Cinderella story is used for testing (avera-
ge 55 seconds, minimum length approximately 48 seconds).
Normal speech was recorded during the first session whereas
whispered speech was recorded during the second session.

The three abovementioned feature representations are
computed on a per–window basis, 32 ms windows and 50 %
overlap. The estimate of short–time WIFs is expressed in kHz
in order to overcome the problem associated with the nodal
variances of the GMM [1]. Mean and variance normaliza-
tion were used, with the assumption that channel effects are
constant over the entire utterance. Prior to system evalua-
tion and for all the experiments, the testing data was divided
into overlapping segments of fixed lengths (5 seconds, 4.5
seconds overlap), and each segment is treated as a separate
test utterance. This procedure is illustrated in Fig. 2 and is
commonly used in speaker verification tasks [9, 1].

Fig. 2. Utterances for testing

4. RESULTS AND DISCUSSION

In this section, we present and discuss our obtained spea-
ker verification experimental results.

4.1. Effects of adding whispered speech to the training set

In order to investigate the effects of adding small amounts
of whispered speech to the training set, an experiment was
performed with the baseline MFCC-GMM system. Experi-
ments were conducted using fixed length of normal speech
data (23 seconds) combined with variable amounts (lengths)

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

 

 

Whsp − 0 secs of Whsp
Whsp − 5 secs of Whsp
Whsp − 10 secs of Whsp
Whsp − 15 secs of Whsp
Whsp − 20 secs of Whsp

Normal − 0 secs of Whsp
Normal − 5 secs of Whsp
Normal − 10 secs of Whsp
Normal − 15 secs of Whsp
Normal − 20 secs of Whsp

Fig. 3. DET curve to investigate the effects of different
lengths of whispered speech for speaker model training

of whispered speech per speaker for training. The number of
Gaussians was adjusted to 35, which in our pilot experiments
showed to be an optimal value for both speaking styles. Re-
sults of these experiments are illustrated in Fig. 3 where solid
line curves show DET curves that correspond to training with
normal and whispered speech and tested with normal speech.
Dashed curves, in turn, correspond to training with normal
and whispered speech, but tested with whispered speech (re-
presented as “Whsp” in the figure). As can be seen, there is
a significant reduction in system performance in mismatch
conditions, i.e, when the system is evaluated with whispered
speech and there is no data available for training of this par-
ticular speaking style. By gradually increasing the amount of
whispered speech available for training, the performance of
the system gradually increases without affecting the perfor-
mance of the system when testing with normal speech; this
corroborates previous findings [11, 2]. Nevertheless, using ap-
proximately the same amount of data of both vocal efforts we
can see that better performance is achieved with normally-
phonated speech than with whispered speech.

4.2. Performance of different feature representations

Next, we explore the gains obtained by using different
features in the matched testing condition (i.e., train/test on
whispered speech). Fig. 4 depicts the DET curves for the th-
ree features. It is observed that WIFs using coherent demo-
dulation exhibit the worst performance. On the other hand,
WIFs using the Hilbert envelope approach achieved perfor-
mance inline with those obtained with the classical MFCC
features. This suggests that there is speaker specific informa-
tion in the phase of the acoustic signal and that an approach
based on Hilbert envelopes can be used to characterize such
information, at least as reliably as MFCCs. Moreover, since
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Fig. 4. DET curve to investigate the effects of different feature
representations and fusion strategies in a matched train/test
whispered-speech condition

MFCCs and WIFs extract complementary information from
the speech signal, we explored their fusion to see if it resul-
ted in improved performances. The results shown in Fig. 4
(continuous black line) show that this is indeed the case.

4.3. Effects of gender detection for gender-dependent SV

Lastly, to investigate the benefits of using gender de-
pendent models, the recordings were separated by gender in
the training phase. Then two UBMs are obtained and their
respective speaker specific models after MAP adaptation,
which allows having two independent recognition systems.
The gender-dependent recognition systems are evaluated se-
parately for each gender and results showed that there are
additional benefits for female speech and a small gain for ma-
le speech (see solid gray and dashed DET curves in Fig. 4).
According to these findings, it is suggested that dedicated
models be used not only per speaking-style but also per gen-
der. Hence, in order to have a completely automated system
using gender-dependent models, an additional gender detec-
tion stage is needed prior to the speaker verification stage, as
is illustrated in Fig. 1 (b). For this purpose, an M -component
GMM per gender was trained; gender detection results for
different feature representations and number of Gaussian
components M are summarized in Table (1).

As can be seen, for gender detection WIF features (ob-
tained via both Hilbert envelope and coherent demodulation
approaches) outperform MFCC features. Moreover, WIF fea-
tures obtained via the Hilbert envelope approach achieve clo-
se to perfect accuracy even with only two Gaussian compo-
nents. This suggests that there is gender-specific information
in the phase of the acoustic signal and that an approach based
on Hilbert envelopes can be used to characterize such infor-

Feature Number of Gaussians (M)
Set 2 5 10
MFCC 94.61 95.14 96.73
WIFs – Hilbert envelope 99.61 99.72 99.99
WIFs – Coherent Demodulation 85.66 95.67 97.57
MFCC + WIFs – Hilbert envelope 97.73 99.05 99.69

Table 1. Gender detection accuracy for different feature re-
presentations and number of Gaussian components

mation. This corroborates previously-reported subjective fin-
dings that whispers not only carry information about speaker
identity but also about the gender, and even without the glot-
tal excitation gender discrimination is a feasible task using
whispered speech [17, 18].

5. CONCLUSIONS

This paper has addressed the issue of speaker verification
based on whispered speech. A standard GMM-UBM model
was used and trained using three different feature represen-
tations, namely 1) mel-frequency cepstral coefficients, and
weighted instantaneous frequencies (WIFs) obtained via 2)
a Hilbert envelope approach and 3) via a coherent demodu-
lation approach. Experimental results using a speaking-style
independent approach showed that incorporation of whispe-
red speech during training was beneficial to the task at hand.
Reliable performances could be achieved once equal amounts
of normally-phonated and whispered speech data were used
for training of the speaker models. Notwithstanding, the ob-
tained performance on normal speech was higher than that
obtained with whispered speech.

Second, we explored the scenario of speaking-style de-
pendent speaker verification and showed that improved re-
sults can be achieved relative to the speaking-style indepen-
dent case. It was shown that the approach adopted to estima-
te the phase and envelope information from the speech sig-
nal has a significant impact on the discriminative capabilities
of the WIF features. More specifically, using the Hilbert en-
velope approach resulted in improved performance relative
to the coherent demodulation approach. Lastly, we explored
the benefits of gender-dependent speaker verification. This
step required the development of an automated whispered-
speech gender identification system. Towards this end, we
found that WIF features extracted via the Hilbert envelope
approach achieved almost perfect gender classification. Futu-
re work will explore the robustness of the system and investi-
gated features under noisy environmental conditions.
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