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Abstract—Quality of Experience (QoE) is a human-centric
paradigm which produces the blue print of human behavioral
states such as perception, emotion, cognition and expectation.
Recent advances in neurophysiological monitoring tools have
facilitated the study of frequency, time and location of neuronal
activity to an unprecedented degree, as well as opened doors
to a better understanding of human cognition, emotions and
overall behavioral systems. These neurophysiological insights may
provide more accurate and objective characterization of QoE
metrics. This paper seeks to investigate neuronal activity due to
different stimulus quality levels in order to understand human
behavioral states at the neural level. An electroencephalography
(EEG) feature was computed based on the coupling between so-
called delta and beta EEG frequency bands, which has previously
been linked with negative behavioral characteristics (anxiety,
frustration, dissatisfaction). The result indicates an increase in
delta and beta coupling with a decrease in the speech quality
levels. Additionally, neural correlates of a subjective affective
scores (arousal and valence) were also computed and shown to
be inversely proportional with EEG feature. These preliminary
findings corroborate that emotions play a significant role in
human quality and QoE perception.

I. INTRODUCTION

Quality-of-Experience (QoE) is a fast emerging multi-
disciplinary field which provides an assessment of human
emotions, perceptions, cognition and behavior with respect to a
particular product, service or application [1]. QoE is a promis-
ing solution to multimedia service providers and vendors who,
in this very competitive environment have been yearning for
rich customer-centric solutions. QoE measurement, however,
is challenging due to the variability and complexity of human
behavior, as not all humans have similar preferences, feelings
or perceptions about a particular service or product. Further-
more, user perceptions and preferences continuously change
over time. The challenge is how to better understand human
behavioral states and transform them into meaningful data.

Human behavior is shaped by internal and external factors.
Internal aspects, for example, include biological, psycholog-
ical, and cognitive factors, while external aspects are related
to social, economic, and technical factors [2]. In psychology,
incentive theory describes external influences (e.g., environ-
ment, and rewards) as motivating factors for humans to do
things, while on the other hand drive theory holds on that it is
in fact the inner human biological need which is the driving

Fig. 1: Conceptual view of the human behavioural formation
system

force behind human actions. Both internal human factors and
external factors influence human behavior as depicted by
Figure 1. External world elements comprising technology,
business, and contextual aspects may exert some influence,
triggering the human neuro-physiological system, which in
turn will develop behavioral traits linked to QoE.

Conventionally, subjective methodologies proposed by the
International Telecommunication Union (ITU-T) have been
employed for capturing Quality of Experience factors such as
user perception, emotion and frustration. Gradually, however
the QoE research community has been moving towards explor-
ing neuro-physiological tools to gain a better understanding
of human neuronal activities and physiological responses re-
sponsible for human behavior formation. Neurophysiological
insights may be obtained via neuroimaging techniques, such
as electroencephalography (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI), and
near-infrared spectroscopy (NIRS), as well as body area sen-
sors and networks. EEG/MEG relies on measuring the electri-
cal/magnetic activity in the brain. Whereas fMRI and NIRS are
based on tracking blood flow (and correlates) that accompanies
neuronal activity. While EEG and MEG provide data with high
time resolution (in the order of milliseconds), they provide
limited spatial resolution. In contrast, fMRI and NIRS provide
good spatial resolution but relatively poor temporal resolution
[3], [4]. For review on these neuro-imaging characteristics,
readers can refer to [5].

Electroencephalography (EEG) features have shown to pro-
vide useful insights for QoE characterization. For example,
the P300 event-related potential (ERP) signal, which occurs
300ms post stimulus presentation, has shown to be a useful
EEG feature in characterizing the quality of text-to-speech
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(TTS) [6], video [7], and audio-visual systems [8]. Another
EEG feature based on wavelet theory was shown to be useful
for detecting artefacts in image and video systems [9]. Another
common EEG feature is EEG sub-band spectral power, which
was recently shown to be useful in characterizing emotional
states of users watching music clips [10]. On the other hand,
the clinical research literature has suggested to use cross-
frequency coupling as a mean of characterizing human emo-
tions, mental activation status, and cognition. For example, in
[11], the delta (1 ≤ δ ≤ 4) and the beta (13 ≤ β ≤ 30)
frequency sub-bands have been linked to behavioral inhibition
states (anxiety and frustration). As such, this paper will explore
the use of δ − β coupling as a correlate of speech QoE
perception.

The remainder of this paper is organized as follows, Section
II presents background and motivation of this pilot study, Sec-
tion III describes the experimental methodology, and in Section
IV, subjective and neurophysiological results are presented.
Lastly, Section V presents the discussion and concludes the
paper.

II. BACKGROUND AND MOTIVATION

ITU-T has proposed several subjective methods for measur-
ing the perceptual Quality of Experience of audio [12] and
video services [13]. On the other hand, the self assessment
manikin (SAM) has been normally used to measure human
affective states [14]. SAM is a non-verbal pictorial assessment
technique that directly measures the valence, arousal, and
dominance associated with a person’s affective reaction to a
wide variety of stimuli [14], [15]. SAM scales are depicted
by Figure 2 for arousal and valence categories. For valence,
SAMs range from a smiling, happy Manikin to a frowning,
unhappy Manikin; for arousal, SAMs range from very excited
with eyes-open to a sleepy with eyes closed Manikin [16].
Many empirical works have repeatedly confirmed that valence,
and arousal are pervasive in organizing human judgments for
a wide range of perceptual and symbolic stimuli, for instance,
audio [17] and video [18]. As such, in this study focus will
be placed on these two dimensions (arousal and valence).

Human behavioral characteristics can be broadly classified
into two major categories: Behavior inhibition system (BIS)
and behavior activation system (BAS). Gray, in his seminal
work [19], suggested that the human behavioral inhibition
system and the human activation system are reciprocally
related to each other. BIS regulates aversive motivational
systems, and promotes avoidance behavior and feelings of
anxiety, frustration, uncomfort and dissatisfaction, while the
BAS regulates appetitive motivation, such as reward, pleasure,
and satisfaction. To understand the neural basis of these behav-
ioral states, normally neuroscientists investigate the prefrontal
cortex (PFC), and temporal cortex as they are known to be
related with affective processing. In [20], it is suggested that
the temporal cortex might also be important for the assignment
of percept and affective meaning, and thus might perform a
key role in experience of emotions, specially, anterior temporal
lobe has been shown to perform a principal role in eliciting
a subjective emotional experience such as valence [21], [22].

On the other hand, the prefrontal cortex generates the affective
facial expressions and the control of affective behavior, thus it
represents the expression of emotion [20]. The medial frontal
cortex (MFC) is an important part of PFC and it has been
linked with arousal [23].

Normally, EEG frequency sub-band powers are computed
to assess BIS and BAS characteristics. It has been found in
several studies that δ − β coupling is related to behavioral
inhibition system characteristics. In [11], authors have found
higher positive correlation between delta and beta powers in
subjects with higher baseline level of salivary cortisol, (the
steroid hormone directly associated with anxiety). In [24],
authors showed that the correlation between midfrontal delta
and beta spectral power increased in healthy male subjects with
an increase in anxiety and behavioral inhibition. It has also
been hypothesized that δ − β coupling reflects higher cortical
arousal in frustrating situations [25]. And they also found that
δ − β coupling is very sensitive to external influences since
it allowed discriminating between good and bad performance
condition. Motivated by these promising insights, goal of this
paper is to investigate if δ − β coupling can be used for QoE
characterization, as a correlate of affective user state (valence,
arousal).

III. EXPERIMENTAL METHODOLOGY

A. Participants
Fifteen subjects participated in this study (eight female,

seven male; mean age = 23.27 years; SD = 3.57; range
= 18− 30); all of them were fluent English speakers. All
participants reported normal auditory acuity and no medical
problems. Participants gave informed consent and received
monetary compensation for their participation. The study pro-
tocol was approved by the Research Ethics Office at INRS-
EMT and at McGill University (Montreal, Canada).

B. Stimulus
As stimulus, a clean double-sentence utterance commonly

used in subjective quality tests was used. In order to generate
distorted speech stimuli of varying quality, the clean speech
stimulus was convolved with recorded room impulse responses
of two different reverberation times (RTs) to generate reverber-
ant speech signals. Table I shows the reverberation times of
the room responses and the mean opinion scores (MOS) of the
respective speech signals. The content of the speech stimulus
was emotionally neutral in order to avoid any influence of
content on the perceptual quality. The sentence was uttered by
a male speaker in an anechoic chamber and digitized at 8 kHz
sampling rate with 16-bit resolution. For consistency, all files
were normalized to -26 dBov using the ITU-T P.56 voltmeter
[26].

C. Methodology for Subjective Test
Participants were asked to fill a demographic questionnaire,

and to perform a subjective quality test. Participants rated
the arousal, valence and dominance dimensions using a 9-
point continuous SAM pictorial scale. Finally subjects were
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Fig. 2: Self Assessment Manikins (SAM) Scales for Emotion Assessment

TABLE I: Characteristics of Speech Stimuli used in Pilot
Experiment

Clean (High
Quality)

Medium
Quality(MQ)

Low Quality
(LQ)

RT = 0.0s RT = 0.4s RT = 1.5s

MOS = 4.2 MOS = 3.8 MOS = 2.8

asked to report their experience and emotions with respect to
three different quality conditions, namely clean (high quality),
medium and low quality. Stimuli were repeated thrice for each
condition.

D. Methodology for EEG Experiment
For EEG recording, a 64 channel Biosemi system was used,

with electrodes arranged in the 10-20 standard system, as
depicted by Figure 3. Four electrodes for electrooculography
(EOG) and two for mastoid-electrodes (right and left) were
also used as reference. The test consisted of a so-called oddball
paradigm; more specifically, the clean speech file served as
the so-called “standard” stimulus and the reverberant files
served as deviants. Clean and reverberant speech files were
delivered in a pseudo-randomized order, forcing at least one
standard stimulus to be presented between successive deviants,
in sequences of 100 trials. Stimulus sequences were presented
with an inter-stimulus-interval varying from 1000 to 1800
ms. Participants were seated comfortably and were instructed
to press a button, whether they detected the clean stimulus
or one of the deviants. Stimuli were presented binaurally
at the individual’s preferred listening level through in-ear
headphones.

1) EEG Data Pre-processing: For the EEG analysis, the
MATLAB toolbox EEGLAB [27] was used. Data was recorded
at 512Hz but down-sampled to 250Hz and band-pass filtered
between 1 and 60 Hz for offline analysis. All channels were
re-referenced to the average of all EEG-channels. EEG epochs
with a length of 3000 ms, time locked to the onset of
the stimuli, including a 200 ms pre-stimulus baseline, were
extracted and averaged separately for each quality level and
for each participant. Movement and eye blink artefacts were
removed using visual inspection and independent component
analysis (ICA).

2) EEG Feature: The EEG δ − β coupling was computed
as the Pearson correlation coefficient between the δ and β

Fig. 3: Electrode Positions based on EEG 10-20 System

frequency band powers for the mid frontal electrode AFz and
anterior temporal lobe electrode F8 as depicted by Figure 3.
Frequency sub-band powers were computed using the Welch’s
method. To generate the distribution of coupling coefficients,
each subjects’ δ and β powers were correlated across all
trials for each quality condition, thus resulting in an overall
(averaged over all participants and trials) coupling coefficient
for the clean, medium-, and low-quality conditions. Lastly,
Fisher′s Z−transformation was used to normalize the coupling
coefficients so they could be correlated with the subjective
affective ratings of arousal and valence.

IV. EXPERIMENTAL RESULTS

A. Subjective Results

Based on the SAM scale, valence and arousal ratings were
calculated across the three different quality conditions. As
can be seen from Figure 4, both arousal and valence scores
decreased as the speech quality of the stimuli decreased. To
better understand the impact of the bi-dimensional (valence-
arousal) interaction with respect to three different quality
conditions, a valence-arousal graph is shown in Figure 5, where
the X-axis represents the SAM scores for valence and the
Y-axis for arousal. The data are centered at (5,5), which is
the neutral emotional state as per the 9-point SAM scale. The
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Fig. 4: Subjective Valence and Arousal ratings with Mean and
Confidence Intervals

Fig. 5: Arousal- Valence Chart

positive valence and high arousal (PV −HA) quadrant rep-
resents emotions such as happiness, excitement, and alertness.
The positive valence and low arousal (PV − LA) quadrant
normally represents emotional characteristics like satisfaction,
relaxation, and content. The negative valence and high arousal
(NV − HA) quadrant, in turn, represents emotional charac-
teristics such as agitation, and anger. Affective behaviors such
as despair, fatigue, and dissatisfaction are represented in the
negative valence and low arousal (NV −LA) quadrant. As can
be seen, for the clean signal, the majority of the participants
rated the stimulus between 4 − 6 in the arousal and valence
scales, thus corroborating the neutrality of the speech content.
As the speech quality decreases, however, the majority of
participants rated between 2 − 4 in the arousal and valence
scales, thus pointing towards the negative “ affect” quadrants.

To ascertain the significance of the observed differences
in valence and arousal with respect to three different quality
levels, hypothesis testing with a paired t-test was used. The
results are presented in Table II. As can be seen, the average
observed difference for arousal and valence ratings were found

TABLE II: Paired T-test of Valence and Arousal scores across
three different Quality conditions

Condition Pairs Valence Arousal

Clean−MQ t = 7.2, p ≤ 0.05 t = 4.2, p ≤ 0.05

Clean− LQ t = 8.4, p ≤ 0.05 t = 3.9, p ≤ 0.05

MQ− LQ t = 8.8, p ≤ 0.05 t = 3.6, p ≤ 0.05

TABLE III: Pearson Correlation between δ and β powers at
EEG electrodes AFz and F8 across three different quality
conditions

δ − β coupling Clean Medium Quality Low Quality

at AFz 0.45, p ≤ 0.09 0.56, p ≤ 0.05 0.68, p ≤ 0.01

at F8 0.49, p ≤ 0.06 0.61, p ≤ 0.05 0.71, p ≤ 0.01

to be statistically different across the three quality conditions,
suggesting that emotional states play a significant role in QoE
perception.

B. Neurophysiological Results
In line with our expectations, the coupling between δ − β

frequency bands at the mid frontal AFz electrode and the
anterior right temporal F8 electrode increased with decreasing
quality conditions, as presented in Table III. This indicates a
rise in behavioral inhibition states (possibly such as frustration,
dislike, boredom and anxiety) with a decrease in speech quality
levels.

When testing the coupling coefficients as correlates of
subjective affective ratings at the midfrontal electrode AFz,
significant correlations were obtained with arousal as shown
in Table IV. A significant Pearson correlation of −0.30 and a
significant Spearman rank correlation of −0.34 were obtained.
Similarly, a significant negative Pearson correlation of −0.35
and a significant Spearman rank correlation of −0.38 were also
obtained between coupling coefficients and subjective valence
ratings at the right anterior temporal electrode F8.

V. DISCUSSION AND CONCLUSION

This study investigated the hypothesis established in clinical
research that an increased EEG δ − β coupling promotes
behavioral inhibition states. We also witnessed an increase in
δ−β coupling at the midfrontal electrode AFz and the anterior
right temporal electrode F8 from clean to low quality speech
stimulus, thus suggesting that distorted stimuli employed in
current study invoked behavioral inhibition characteristics.
However, it is possible that either by changing the type of
artefact or changing the degradation levels of a stimulus, a
different δ − β coupling trend could be achieved.

We also found significant negative correlation between nor-
malized δ − β coupling coefficients and subjective affective
(arousal and valence) ratings at the EEG electrode AFz, and
F8 respectively. The obtained correlation level, however, was
not high but it followed the hypothesized inverse relationship
trend. This is probably because human subjective judgement
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TABLE IV: Correlation between EEG feature and affective
ratings [*: p < 0.05].

EEG Feature Arousal Valence

Normalized Coupling
Coefficients

ρpearson=-0.30* ρpearson=-0.35*

ρspearman=-0.34* ρspearman=-0.38*

may not always be exact replica of its objective neurophysio-
logical facts. Additionally, it is also likely due to neutrality of
the content utilized for the speech stimuli in the experiment,
which may not have evoked strong emotional characteristics.
For future experiments, it is suggested that stimuli of varying
affective content be used to further investigate the role of
the δ − β coupling coefficient on objective QoE perception
modeling.

These preliminary insights suggest that in addition to subjec-
tive QoE methodologies, complex human neurophysiological
processes may be used to characterize human behavioral char-
acteristics. For instance, δ − β coupling provides information
about user anxiety, frustration and dissatisfaction. As such, if
content and service providers want to ensure rich quality of
user experience, the δ−β coupling should not be strong enough
to incite negative behavioral characteristics in end users.
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