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Abstract—Voice user interface and speech quality are normally
assessed using subjective user experience testing methods and/or
objective instrumental techniques. However, the recent advances
in neurophysiological tools allowed useful human behavioral
constructs to be measured in real-time, such as human emo-
tion, perception, preferences and task performance. Electroen-
cephalography (EEG), and functional near-infrared spectroscopy
(fNIRS) are well received neuroimaging tools and they are being
used in variety of different domains such as health science,
neuromarketing, user experience (UX) research and multimedia
quality of experience (QoE) discipline. Therefore, this paper
describes the impact of natural and text-to-speech (TTS) signals
on a user’s affective state (valence and arousal) and their
preferences using neuroimaging tools (EEG and fNIRS) and
subjective user study. The EEG results showed that the natural
and high quality TTS speech generate “positive valence”, that
was inferred from a higher EEG asymmetric activation at frontal
head region. fNIRS results showed the increased activation at
Orbito-Frontal Cortex (OFC) region during decision making in
favor of natural and high quality TTS speech signals. But natural
and TTS signals have significantly different arousal levels.

Index Terms—Text-to-Speech, TTS quality, User Experience,
Emotions, Physiological metrics, EEG, fNIRS

I. INTRODUCTION

Text-to-Speech (TTS) systems have seen a tremendous in-

crease in recent years as emerging voice user interfaces (VUI)

application for computers, smartphones, global positioning

systems, and assistive technologies (e.g., for the visually im-

paired), to name a few. Thanks to advancements in technology,

the intelligibility of TTS systems have improved multi-fold

[1], however, their quality is still no match to natural human

speech and this may cause a poor user listening experience.

The benchmarking of speech systems on “quality” is a cor-

nerstone of all subjective and objective testing methods, how-

ever, there are also some other important human behavioral

characteristics such as emotions, and user preferences, which

should also be investigated in order to guage overall user

experience. This paper aims to fill this gap by investigating

user affective state and preferences with respect to natural

speech and two different TTS speech quality signals.

In addition to subjective user testing and objective instru-

mental methods, another emerging trend is to use neuroimag-

ing tools. These tools assist with detailed evaluation, allowing

for behavioural insights to be gathered that would otherwise

not be made available via questionnaires. For example, elec-

troencephalography (EEG) has been used to obtain neural

correlates of perceptual [2], [3], affective [4], [5], and cognitive

processes [6]. Similarly, functional near-infrared spectroscopy

(fNIRS), has also been used to understand human decision

making process [7], speech perception [8] and emotions [9].

The human brain is complex organ that controls everything

we do. The frontal brain is normally responsible for emotion

processing [10]. While orbito-frontal cortex (forehead) is re-

sponsible for valuation based decision making [11]. In current

work, EEG electrodes placed at frontal brain were investigated

in order to evaluate affective state (valence and arousal). While

fNIRS optodes were placed at forehead to measure neuronal

activation in order to infer the user preference based decision

making. Forehead, due to its proximity to eyes and facial

muscles, is more susceptible to eye blinks, eye movements,

facial muscles and other forehead artefact. Therefore, EEG

electrode placement at forehead region is normally not rec-

ommended because it has more risk of getting contaminated

with these artefacts than fNIRS [12]. Secondly, hair attenuate

fNIRS optical signals, since forehead is free from hair, fNIRS

becomes right choice to investigate this region of the brain.

The remainder of this paper is organized as follows. Section

2 provides an overview on TTS speech quality testing methods

and neuroimaging tools and features, section 3, provides exper-

imental details of current study. Section 4 provides subjective

user study and neurophysiological results. Finally in section

5, we discuss and conclude our work.

II. BACKGROUND

TTS speech quality is normally assessed either subjectively

or objectively. Subjective user testing typically involves user

ratings and surveys to collect speech quality of experience

metrics. ITU-T P.85 is well known standard for subjective

quality testing for TTS systems [13]. Objective methods,

on the other hand, replaces the users with a computational

algorithm that has learned complex mappings between several

key factors and previously-recorded user ratings. Some of the

objective methods for TTS quality assessment are discussed in

[14], [15]. Another emerging trend is to use physiological tools

to characterize speech quality of experience. It is known that

human emotions and perceptions are outcomes of complex

multimodal processing at the neuronal level. To measure

emotions and other important behavioral characteristics, neu-

roimaging tools can be used. EEG is one such emerging tool,



and it measures the electric potential of underlying neurons

and it is recorded by placing electrodes on the head. Another

tool is fNIRS and it measures the neuronal activation of the

brain by measuring blood flow. For more detail on these

techniques, interested readers can refer to [16].

To characterize human affective states, the human frontal

head region has widely been investigated. Seminal studies have

shown differential involvement of right and left hemispheres

in emotional processing, where the activity in the right hemi-

sphere is linked with unpleasant emotions and the left with

pleasant emotions [17], [18]. As such, an asymmetry index

feature has been developed which measures the difference in

EEG activity in the alpha band from the right to the left hemi-

sphere; the index is correlated with the subjective valence [10],

[19]. Moreover, the beta frequency band power at the medial

prefrontal cortex (MPC) have been linked to the arousal.

Cortical activity at MPC can be investigated using the event-

related synchronization or desynchronization (ERS/ERD)
method. The higher the event related desynchronization in beta

band, the lower will be the cortical activity.

fNIRS features are based on changes in blood flow, repre-

senting activation/deactivation of a specific brain region. The

higher value of oxygenated (∆[HbO]) peak amplitudes and the

lower values of deoxygenated haemoglobin (∆[HbR]) valleys

indicate the increased activation. According to the so-called

neuro-economics literature, the OFC is also responsible for

the valuation and outcome evaluation processes involved in

decision making [11], [20], [21]. As reported in [22], [23],

the activation of the peaks and the valleys of the oxygenated

(∆[HbO]) and deoxygenated haemoglobin (∆[HbR]) at OFC

are linked with valuation based decision making process.

III. EXPERIMENTAL METHODOLOGY

A. Subjects

Fourteen fluent English speakers (6 Males, 8 Females) with

an average age of 21.6 years participated in the subjective

listening test. None of them reported having any hearing

impairments or other health issues. In-ear headphones were

used to play the synthesized speech stimuli at their individual

preferred volume. The protocol was approved by the INRS and

McGill Research Ethics Offices and participants consented to

participate and were compensated monetarily for their time.

B. Synthesized speech stimuli

Synthesized speech stimuli used in this study were taken

from the 2009 Blizzard TTS Challenge data [24]. The Chal-

lenge was developed to compare existing corpus-based TTS

systems on the same development set.

The two TTS signals were selected and they were represen-

tative of low- (LQ), and high-quality (HQ) systems. For bench

marking purposes, we also used the original “Natural” speech

signal. The each stimulus comprised four English sentences

(neutral in content) of duration 8-10 seconds. All stimuli

were presented to the listeners at a sampling rate of 16 kHz

and a bitrate of 256 kbps. The speech signals correspond to

restaurant recommendation system.

Fig. 1: EEG electrode positions on head as per 10-20 system,

the highlighted electrodes are investigated in current paper

C. Experimental Protocol

At first, subjective ratings were collected for all 12 stimuli

(4 sentences and 3 conditions- natural, HQ and LQ TTS). The

self assessment manikin (SAM) pictorial system was used to

measure valence and arousal, which ranges from “1” to “9”,

where 1 represents low valence/arousal and 9 represents the

highest valence/arousal state [25].

After subjective user testing, participants were first fitted

with EEG cap and customized fNIRS headband and then

placed in front of a 22-inch computer screen. They were given

a keyboard to provide binary response as whether they liked

a stimulus presented to them or not. The ratio of stimulus

with favorable rating to the total number of presented trials

were calculated and this ratio factor was named as Preference

metric. This part of the experiment was divided into six blocks,

each lasting for about 10 minutes with an inter-stimulus

interval (ISI) of around 20s. This ISI duration is important for

fNIRS signal activity normalization, because it gives enough

resting time for the changes in cerebral hemodynamics to

return to baseline levels. The stimuli were pseudo-randomized

within blocks and subjects.

D. EEG

For EEG recording, we used a 64 channel Biosemi system,

with electrodes arranged in the 10-20 standard system, four

electrodes for electrooculography (EOG) and two for mastoid-

electrodes (right and left) were also used for reference. Data

were recorded at 512 Hz but down-sampled to 256 Hz and

band-pass filtered between 1− 50 Hz for offline analysis.

All channels were re-referenced to the average of all EEG-

channels. EEG epochs, time locked to the onset of the stimuli,

were extracted and averaged separately for each speech quality

conditions and for each participant. Body movement and eye-

blink artefact from data were removed using visual inspection

and independent component analysis (ICA).

For EEG analysis, EEGLAB toolbox for the MATLAB [26]

was used. Two EEG features were extracted, namely an alpha-

band asymmetry index (AI) and the MPC beta power (MBP),

as correlates of valence and arousal emotion primitives, re-

spectively. More specifically, the AI feature was computed by

subtracting the natural logarithm of the alpha power of the two

frontal electrodes F3 and F4 (exterior electrodes highlighted

in Fig. 1), as suggested by [10]:

AI = ln(αF4)− ln(αF3). (1)



TABLE I: Repeated measure ANOVA for subjective affective

factors across three different speech quality conditions

Variables p F- Value η
2

Arousal ≤ 0.01 16.30 0.56

Valence ≤ 0.01 33.88 0.72

The MBP feature, in turn, was computed using event related

desynchornization (ERD) with the beta power in the Fz

position, where reference represents the beta sub band power

at Fz during resting state, and original signal represents the

beta sub-band power at Fz during audio stimulus.

MBP = (βFz(Ref) − (βFz(Org)/βFz(Ref)) ∗ 100. (2)

E. NIRS Signal Acquisition and Analysis

The NIRScout system was used with a customized head-

band. It has two probing wavelengths 760 and 850 nm. It

comprised of 5 transmitters and 9 detectors with a minimum

of 2.5 cm and a maximum of 3.4 cm inter-optode distance,

thus resulting in 21 channels as shown in the Fig. 2(a).

Recordings were made at a sampling frequency of 10.42

Hz. Note that channels 17-18 correspond to the OFC region.

fNIRS data were preprocessed and analyzed using the fNIRS-

SPM toolbox [27]. The raw intensity signals from each channel

were detrended using a discrete cosine transform based algo-

rithm and converted into concentration levels of oxygenated

(∆[HbO]) and deoxygenated haemoglobin (∆[HbR]) using

the well-known modified Beer-Lambert law (MBLL) [28].

Two features were extracted from the two detrended wave-

forms, as described in [23]. The features included: peak ampli-

tude of the ∆[HbO] curve and the amplitude of the ∆[HbR]
curve valley. These features were extracted from each of the 21

functional channels for each participant. The ∆[HbO] peak,

abbreviated as “OP” and ∆[HbR] valley, abbreviated as “DV”

respectively. They have been found to be correlated with the

Blood Oxygenation Level Dependent (BOLD) signal measured

via magnetic resonance imaging, which in turn is positively

correlated with regional neural activation [29].

IV. RESULTS

A. Characterization of Affective State

Affective states (valence, arousal) were collected using

subjective SAM scale across three difference speech quality

conditions. A repeated measure within subjects ANOVA was

computed on affective data using the predictive analytic soft-

ware SPSS. The effects of three different quality conditions

(natural, HQ, LQ TTS) were compared on each response

variable: valence and arousal. Mauchly’s test indicated that the

assumption of sphericity had been violated (p < 0.05), there-

fore degrees of freedom were corrected using Greenhouse-

Geiser estimate of sphericity. The ANOVA results are reported

in Table I, and they show a significant main effect in subjective

response variables across three different quality conditions. As

can be seen, there is a strong effect size η2 for valence but

arousal has moderate effect size score.

TABLE II: Post-Hoc test based on paired-samples T-test for

Arousal, and Valence

Conditions Arousal Valence

Nat-HQ p ≤ 0.01 p ≤ 0.01

Nat-LQ p ≤ 0.01 p ≤ 0.01

HQ-LQ p = 0.5 p ≤ 0.01

TABLE III: Paired T-test for AI and MBP with Cohen’s D

effect size

Conditions AI Effect Size MBP Effect Size

Nat-HQ p = 0.80 0.07 p ≤ 0.02 1.10

Nat-LQ p ≤ 0.04 0.73 p ≤ 0.05 0.87

HQ-LQ p ≤ 0.05 0.68 p = 0.47 0.28

As a post-hoc analysis, paired T-test was computed as

given in Table II. Valence score passed paired-samples T-

test across three different conditions. However arousal did not

show significant difference between TTS condition (HQ-LQ).

This finding indicates that subjects did not feel difference in

arousal level between HQ and LQ TTS signals.

The subjective findings reported above suggest that per-

ceived quality and induced affect play a crucial role in user

quality of experience. As such, in order to develop a true

objective metric, EEG based neural metrics are needed. Asym-

metry Index (AI) is widely known as counter part of subjective

valence score [10]. It was computed to evaluate valence levels.

For the measurement of arousal level, MBP was computed

using event related desynchronization method (ERD), as given

in equation 2. MBP is normally used to measure the arousal

characteristics (e.g., attention, engagement).

After preprocessing of EEG data, hypothesis testing on AI

and MBP features across three different quality conditions was

conducted. And effect size was computed using Cohen’s D

method. Results are depicted by Table III. Unlike subjective

results, a paired-samples T-test on AI scores indicated that

natural and HQ TTS signal scores were not significantly

different, and their low effect size also confirmed the same

(D=0.07). However, paired-samples T-test between (Nat-LQ)

and (HQ-LQ) indicated that these signals are significantly

different, and Cohen’s D values also indicated the strong effect

size. These results suggest that natural and HQ TTS evoked

increased asymmetric activation or similar lateralization effects

on prefrontal brain in contrast to LQ TTS signal. This is

probably because natural and HQ TTS have more pleasant

quality than LQ TTS speech signals.

Paired-samples T-test on MBP scores was also computed

and the (Nat-HQ) and (Nat-LQ) conditional pairs showed sig-

nificant mean differences, and Cohen’s D values also indicated

the strong effect size as shown in Table III. However, the test

failed for HQ-LQ TTS condition. It means, on the basis of

MBP data, one can infer that natural speech has significantly

different mean values than HQ and LQ TTS signal. This is

probably because natural speech has different prosodic nature

than TTS signals, and in this experiment, natural speech signal

was also deviant signal between the pool of TTS signals, and

every time, a subject listed to natural signal, it might have



Fig. 2: fNIRS headband optode topology where 2 (a) shows the 21 channels, depicted within squares with ‘S’ and ‘D’ showing

the source, the detector positions, colored area is area of investigation and 2 (b) presents the 3-D finite element method (FEM)

head model with the source and detector shown in red and green, respectively.

TABLE IV: Repeated measure ANOVA for fNIRS features

Features p F-Value η
2

Ch17OP ≤ 0.02 4.77 0.35

Ch17DV ≤ 0.05 7.37 0.45

Ch18OP ≤ 0.07 2.91 0.23

Ch18DV ≤ 0.02 4.40 0.30

evoked more attention and engagement. These results were

also corroborated by the subjective arousal.

Next, the Pearson and Spearman rank correlation values

were also computed between subjective data and EEG affective

features as presented in Table VI. AI showed a significant

positive correlation with the subjective valence ratings (0.44;

p ≤ 0.05), thus, indicating a similar increasing trend between

the AI metric and subjective valence score. The MBP ERD

metric, in turn, showed a significant negative trend with

subjective arousal ratings (-0.44; p ≤ 0.05); this is because

MBP ERD is inversely related to arousal and excitement.

B. Characterization of Preference

If we humans consider a task more rewarding, we may

prefer to do it, this value based decision making activates

OFC region as discussed in [11]. We used fNIRS headband on

forehead to capture OFC signals. The fNIRS features specially

the amplitudes of the ∆[HbO] peaks and ∆[HbR] valleys

were computed. The amplitudes of the ∆[HbO] peaks increase

and ∆[HbR] valleys decrease with higher perceptual quality

in the OFC region (channels 17 and 18), suggesting increased

activation of the region during decision making.

To provide statistical evidence, a within subjects repeated

measures ANOVA was used. Mauchly’s test indicated that the

assumption of sphericity had been met(p > 0.05) for the

fNIRS features. A significant main effect was observed for

fNIRS features (except for the channel 18 ∆[HbO] peaks)

across all three quality conditions as reported in Table IV, but

the effect size was found to be weak for all fNIRS features.

For further investigation, Post-hoc analysis based on paired-

samples T test was computed. As shown in Table V, there

was no significant mean difference between natural and HQ

TTS and while for all other conditions, a significant mean

difference was found. The higher values of ∆[HbO] peaks and

lower values of ∆[HbR] valleys for natural speech and HQ

TABLE V: Post-Hoc test based on Paired T-test for fNIRS

features

Conditions CH17OP CH17DV CH18OP Ch18DV

Nat-HQ p =0.40 p =0.90 p =0.90 p =0.40

Nat-LQ p ≤0.01 p ≤0.01 p ≤0.06 p ≤0.01

HQ-LQ p ≤0.01 p ≤0.01 p ≤0.01 p ≤0.05

TABLE VI: Correlation Matrix between Neurophysiological

features and Subjective factors

Variables Pearson Correlation Spearman Correlation

Valence- AI 0.44 0.42

Arousal-MBP (ERD) -0.44 -0.43

Pref-CH17OP 0.49 0.50

Pref-CH17DV -0.63 -0.66

Pref-CH18OP 0.33 0.24

Pref-CH18DV -0.52 -0.51

TTS signal in comparison to LQ TTS signal suggest that the

former stimuli induce a significantly higher activation at OFC

region (channel 17 and 18). These channels were located on

OFC region as shown in Figure 2. The higher activation of the

OFC region indicates the higher valuation assigned to natural

and HQ TTS signals. This finding is further corroborated

by the well correlated Preference metric and fNIRS features

(∆[HbO] peaks and ∆[HbR] valleys) from channels 17 and

18 as shown in Table VI.

V. DISCUSSION AND CONCLUSION

In this paper, we attempted to characterize TTS speech sig-

nals based on user emotions and preferences using subjective

user ratings, and neuroimaging tools.

Our findings based on subjective user ratings for TTS

system evaluation using “valence” measure suggest a linear

trend between speech quality and subjective valence. Re-

peated measure ANOVA and Post-Hoc tests validated this

trend. However, EEG based valence measure, Asymmetry

Index has slightly different results, for instance, paired T-test

failed between natural and HQ TTS signals, suggesting that

both signals demonstrated similar asymmetric lateralization or

activation, unlike LQ TTS. fNIRS data for preference based

decision making (i.e., activation at OFC) region also followed

the similar trends as of EEG AI trends. It means, natural and



HQ TTS signal has similar valence and user acceptance levels,

except LQ TTS signal. However subjective valence ratings

might have been influenced by other factors (e.g., arousal).

Interestingly, arousal factor followed a different trend, un-

like valence and preference metric. Our findings based on

subjective user ratings and EEG metric suggest that natural

speech signal has different level of arousal (excitability level)

than HQ and LQ TTS signal (see Table II, III), while HQ TTS

signal did not demonstrate a significant difference in arousal

level with LQ TTS signal. Natural speech signal surpassed

both TTS signals on the basis of “arousal” level. Thus, it also

signals the need for improvement in TTS signals in terms of

arousal factor, despite their natural sounding prosody and high

quality delivery, they are still lagging behind the natural speech

signal. It is also possible that by excluding natural signal from

study and re-testing only TTS signals may generate different

arousal levels. However, it is not recommended, as natural

sounding quality and feel is the ultimate target of TTS systems.

TTS system developers should test their system not only

on “quality” benchmarks, but also on emotions and other

cognitive characteristics. In order to obtain subtle details and

indepth view on overall user experience with TTS system,

physiological tools become good addition in testing toolkit.
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