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Abstract— We consider multiple description communi-
cation over Rayleigh fading channels with binary phase-
shift keying (BPSK) modulators at the transmitter and
soft-decision detectors at the receiver. The multiple-
channel optimized quantizer design (MCOQD) method,
introduced in [7] for multiple discrete memoryless chan-
nels, is extended to multiple Rayleigh fading channels.
The decision thresholds of the soft-decision detectors are
optimized to achieve minimum end-to-end distortion. Sim-
ulation results show that MCOQD provides more robust
quantizers than multiple description scalar quantizers [3]
over Rayleigh fading channels, when both the encoder and
decoder are matched to channel statistics, and when only
the decoder is matched to channel statistics.

Keywords: Multiple description coding, joint source-
channel coding, quantization, channel optimized quantizers,
coding for erasure channels.

I. INTRODUCTION

Multiple description coding (MDC) is concerned with

encoding information from a source into two or more

descriptions, such that any subset of the descriptions can

be used for source reconstruction, and the reconstruction

quality improves with the size of the subset. The basic

motivation for MDC is to provide reconstruction quality

that degrades gracefully with the number of descriptions

lost in transmission, e.g., over a packet network. An

accessible introduction to MDC is provided by Goyal

[1].

Most existing multiple description coding (MDC)

schemes [3], [4] consider only “on-off” channels and are

not suited to channels with symbol or bit errors. In [3],

Vaishampayan introduced a technique, herein referred to

as multiple-description scalar quantization (MDSQ), for

designing scalar quantizers for two-description coding.

The design procedure entails first selecting an index

assignment (IA) and then optimizing the quantizer par-

tition and reconstructions for the chosen IA. In [7], we

proposed multiple channel optimized quantizer design

(MCOQD) and showed that the designed quantizers

outperformed the multiple description scalar quantizers

of [3] over discrete memoryless channels (DMCs) with

symbol errors and erasures.

Yang et al. [5] applied the MDSQ in [3] to Rayleigh

fading channels, where the channel was declared to be

in a working state or erasure state by comparing a fading

parameter with a predetermined threshold. An upper

bound, instead of a closed form, of the channel erasure

probability was derived. However, they discovered that

the upper bound was too loose at low channel signal-to-

noise-ratio (SNR) to be used for MDSQ design.

In this paper, the MCOQD in [7] is extended to

Rayleigh fading channels with binary phase-shift keying

(BPSK) modulators at the transmitter and soft-decision

detectors at the receiver. The detectors are initially set to

have three detection regions. Channel erasure is declared

when the energy of the received signal is small (as

determined by detector thresholds). Closed forms of

the channel erasure and bit error probability are used

for MCOQD. The soft detectors are then extended to

have more than three detection regions. The decision

thresholds are optimized to achieve minimum end-to-end

distortion. Performance results are also provided for the

case where the receiver but not the transmitter has perfect

knowledge of channel statistics.

II. REVIEW OF MCOQD FOR DMCS

Channel optimized quantizer design (COQD) as orig-

inally proposed by Farvardin and Vaishampayan [2] is a

joint source channel coding scheme for bit-error chan-

nels. With COQD, a scalar quantizer is designed to min-

imize the reconstruction error due to both quantization

and channel errors. MCOQD is obtained by extending

COQD to the case of sending two descriptions over two

parallel channels, where both erasure and symbol errors

may occur. Extension to more than two channels will be

seen to be straightforward.

6870-7803-8622-1/04/$20.00 ©2004 IEEE



DMC

Decoder x̂

2u

1u 1v

2v

BPSK
Soft-decision

detector

DMC

BPSK
Soft-decision

detector

Quantizer
f

x IA
mapping

w

MCOQD encoder MCOQD decoder

Rayleigh

fading

Rayleigh

fading

OPAv ∈

gh Indexing

e

Fig. 1. System model of MCOQD over two DMCs and Rayleigh fading channels.

A system block diagram of MCOQD for two DMCs

is shown in Fig. 1 (the upper channel branch). A

source sample x is first quantized with an M -level

scalar quantizer, which maps the source x ∈ R into

one of M values. The quantization effects an encoder

mapping f : R → {1, 2, ..., M}, whose output is

quantizer index w, i.e., w = f(x). w is mapped to

two descriptions u1 and u2, at bit rates of R1 bits and

R2 bits, respectively, with 2R1+R2 ≥ M . The mapping

h : {1, 2, ..., M} → {1, ..., 2R1} × {1, ..., 2R2} realizes a

multiple-description IA [3]. Each channel is an indepen-

dent discrete memoryless channel (DMC) with erasure

output. Symbol erasure is treated as a channel output,

denoted by “E” in the DMC output alphabet. Each

distinct channel output pair (v1, v2) is assigned a unique

index value v ∈ AOP = {1, ..., L}. The decoder effects

a mapping g : AOP = {1, ..., L} → R. v is decoded

to one of the L possible values in a decoder codebook

C = {x̃1, . . . , x̃L} ⊂ R, i.e., x̂ = g(v). Considering all

possible channel output values, the decoder codebook

size is therefore L = (2R1 + 1)(2R2 + 1).

The above formulation of the encoder involves two

mappings: encoder mapping f and IA mapping h. How-

ever, the encoder is treated differently in MCOQD.

MCOQD seeks to directly optimize the mapping from

x to (u1, u2), instead of the two consecutive mappings

f and h. We define an equivalent encoder mapping

e : R → {1, ..., 2R1} × {1, ..., 2R2}. MCOQD chooses

an encoder e that always picks the best output (u1, u2).

Akin to the generalized Lloyd algorithm (GLA) [8],

the MCOQD algorithm [7] is an iterative improvement

algorithm constructed based on two necessary optimality

conditions. The nearest neighbor condition gives the

optimal e for fixed g, and the centroid condition gives the

optimal g for fixed e. Let each channel input pair (u1, u2)

be assigned a unique index u ∈ AIP = {1, ..., M}. The

optimal encoder e∗, for a fixed decoder g, selects the

best channel input symbol u∗ ∈ AIP to minimize the

expected squared error distortion, i.e.,

u∗(x) = arg min
i∈AIP

L∑
j=1

P (v = j|u = i)(x − x̃j)2 (1)

where P (v = j|u = i) is the probability that the
multiple-channel output symbol v = j ∈ AOP , given
the multiple-channel input symbol u = i ∈ AIP , with
u = i ⇐⇒ (u1, u2) = (i1, i2) and v = j ⇐⇒
(v1, v2) = (j1, j2). The channels are independent so
that the multiple-channel symbol transition probabilities
can be written in terms of the single-channel symbol
transition probabilities as:

P (v = j|u = i) = P (v1 = j1|u1 = i1)P (v2 = j2|u2 = i2).
(2)

The optimal decoder g∗, for a fixed encoder e, maps

j ∈ AOP to x̃∗
j ∈ C∗, where

x̃∗
j =

∑M
i=1 E[X|X ∈ Qi]P (X ∈ Qi)P (v = j|u = i)∑M

i=1 P (X ∈ Qi)P (v = j|u = i)
,

(3)

and Qi is the set of all source values encoded to u =
i. MCOQD offers several advantages over the MDSQ

design in [3]. MCOQD is simpler, can handle both
erasure and symbol errors, and is readily extended to

designing for more than two descriptions or channels.

III. MCOQD OVER RAYLEIGH FADING CHANNELS

We consider multiple description communication over

two independent Rayleigh channels (the lower chan-

nel branch in Fig. 1) with a MCOQD encoder at the

transmitter and a MCOQD decoder at the receiver. The

two bitstreams generated by the MCOQD encoder are
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BPSK modulated and sent over two Rayleigh fading

channels. Specifically, each bit of the binary Ri-tuple,

ui ∈ {1, ..., 2Ri}, is modulated to a BPSK signal. Let

Si (Si ∈ {√Eb,−
√

Eb},i = 1, 2), Wi, and Yi be the

transmitted BPSK signal, channel noise, and the received

signal, respectively, of the i-th channel, then

Yi = HiSi + Wi, i = 1, 2 (4)

where Wi is Gaussian and Hi is Rayleigh distributed,

i.e.,

PHi
(hi) =

hi

σ2
i

e−h2
i /2σ2

i , hi ≥ 0.

We use soft-decision detectors at the receiver, as

shown in Fig. 1. Suppose the detector for channel i
uses Ni detection regions. The concatenation of the

BPSK modulator, the Rayleigh fading channel and the

soft detector for each channel can be modelled as a

binary-input and Ni-output DMC. For channel i with

rate Ri, the binary-input, Ni-output DMC is used Ri

times. Suppose (u1
i , . . . , u

Ri

i ) is sent and (v1
i , . . . , v

Ri

i )
is received. Assuming the DMC is memoryless from one

use to another, the transition probabilities for the Ri-

tuple input channel can be calculated as

P (vi|ui) =
Ri∏
l=1

P (vl
i|ul

i) (5)

where P (vl
i|ul

i) is a transition probability of the binary-

input, Ni-output DMC. In practice, independent statistics

for successive channel use can be achieved using bit-

interleaving. With (5), the multiple-channel transition

probability P (v|u) can be calculated using (2) and used

as the channel parameters for MCOQD.

A. Soft-detector with three detection regions

In [5], the MDSQ in [3] is applied to Rayleigh fading

channels, where a channel is declared to be in a working

state or erasure state by comparing the fading parameter

with a predetermined threshold. In this paper, channel

erasure is deemed to occur when the energy of the

received signal is not large enough. To this end we

use a soft-decision detector with three detection regions.

Specifically, the detector outputs symbols “0”, “E” or “1”

for detection regions (−∞,−Ti), [−Ti, Ti] and (Ti,∞),
respectively, with “E” standing for “erasure”. The equiv-

alent binary-input ternary-output DMC is shown in Fig.

2 with bit error probability εi and erasure probability γi.

0

1
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1

E
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iγ
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Fig. 2. The binary-input ternary-output DMC with bit error
probability εi and erasure probability γi.

For a given Hi = hi, the conditional εi and γi can be
evaluated as

εi(Ti|Hi = hi) = Q

(
Ti + hi

√
Eb√

W0/2

)
, (6)

γi(Ti|Hi = hi) = Q

(
−Ti + hi

√
Eb√

W0/2

)
− Q

(
Ti + hi

√
Eb√

W0/2

)
,

(7)

where W0 is single-sided noise power spectrum density.

By averaging εi(Ti|Hi = hi) and γi(Ti|Hi = hi) over

the probability density function of Hi, we obtain

εi(Ti) =
∫ ∞

0

hi

σ2
i

e−h2
i /2σ2

i Q

(
Ti + hi

√
Eb√

W0/2

)
dhi, (8)

γi(Ti) =
∫ ∞

0

hi

σ2
i

e−h2
i /2σ2

i

[
Q

(
−Ti + hi

√
Eb√

W0/2

)

− Q

(
Ti + hi

√
Eb√

W0/2

)]
dhi. (9)

The end-to-end distortion, D, is determined by the

multiple-channel symbol transition probabilities P (v|u).
Variation of the thresholds Ti affects P (v|u) and thus

D. Our objective is to determine the thresholds Ti such

that D is minimized:

[T1, T2]opt = arg min
T1,T2

D[ε1(T1), ε2(T2), γ1(T1), γ2(T2)].

(10)

D is obtained by running the MCOQD algorithm for

the channels with multiple-channel symbol transition

probabilities determined by εi(Ti) and γi(Ti).

B. Soft-decision detectors with more than three detection
regions

In [6], COQD is applied to a Rayleigh fading channel

with a soft-decision detector at the receiver. The numer-

ical results show that the performance improves as the

number of detection regions increases. We note that the

notion of channel “erasure” becomes less relevant as the

number of the detection regions increases beyond three.
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In Fig. 1, the output Yi of the i-th Rayleigh fading

channel is detected through the use of a uniform scalar

quantizer with Ni > 3 quantization regions. Let the step

size of the uniform scalar quantizer be ∆i. The detection

thresholds satisfy

T j
i =

⎧⎨
⎩

−∞, j = −1
(j + 1 − Ni

2 )∆i, j = 0, 1, ..., Ni − 2
∞, j = Ni − 1.

For Ni = 3, the thresholds T 0
i = −∆i/2 and T 1

i =
∆i/2 specialize to the detection thresholds defined in

section III-A. The problem of finding optimal detection

thresholds T j
i is equivalent to choosing an optimal step

size ∆i for a fixed Ni. Following the approach in

section III-A, channel symbol transition probabilities can

be calculated as a function of ∆i, and placed into a

transition probability matrix denoted as πi. The optimal

step sizes are obtained as

[∆1, ∆2]opt = arg min
∆1,∆2

D[π1(∆1), π2(∆2)]. (11)

One key difference between our optimization approach

and [6] is that we choose ∆i to minimize the end-to-

end distortion while [6] chooses to maximize the mutual

information between the binary-input and soft-decision

output of the DMC. The ∆i obtained using the approach

in [6] is suboptimal for our objective of minimizing end-

to-end distortion.

C. Adaptive MCOQD in the presence of channel mis-
match

The designed MCOQD encoder and decoder in sec-

tions III-A and III-B are sensitive to the channel pa-

rameters, i.e., the Rayleigh fading parameter σi and

the noise parameter W0 in (8) and (9). The channel

parameters can be estimated at the receiver and sent back

to the transmitter for the design purpose. However, a

feedback channel may not be available in practice. It is

of particular interest to study the case where the actual

channel parameters differ from those used for the design.

We consider a scenario wherein channel statistics are

slowly varying. The decoder has perfect knowledge of

the channels, i.e., σi and W0, and adapts accordingly,

while the encoder has no knowledge of the varying

channels and therefore fixed. The MCOQD encoder

and decoder and the soft-decision detector are initially

designed based on predetermined channel parameters,

using the methods introduced in sections III-A and III-

B. When applied to the channels, both the detector and

decoder adapt given up-to-date knowledge of σi and W0.

The decoder recomputes the reproductions according to

(3), given the fixed encoder partition, and the channel

transition probabilities are calculated based on reopti-

mized detection thresholds.

IV. PERFORMANCE RESULTS

We first simulate the performance of MCOQD where

the channel parameters used for design match the actual

channel parameters in operation. A memoryless Gaussian

and a memoryless Laplacian source with zero mean and

unit variance are considered. For simplicity, we assume

that the two Rayleigh fading channels have identical

fading statistics, and thus the detection thresholds for the

two channels are chosen to be equal, i.e., T1 = T2 = T
in section III-A and ∆1 = ∆2 = ∆ in section III-B.

Let δ = ∆/
√

Eb be a normalized step size. Performance

is expressed as signal-to-distortion ratio (SDR) in dB

versus average channel SNR measured at the receiver of

one channel, i.e., SNR = Eb

W0
E{H2} = 2σEb

W0
.

The performance of the MCOQD system and the

associated optimized δ are shown in Fig. 3 and Table

I, respectively. Table I shows that the optimized de-

tector step size decreases as the channel SNR or the

number of detection regions increases. Fig. 3 shows the

performance of MCOQD improving as the number of

detection regions increases, e.g., an improvement of 0.2-

0.3 dB is achieved from 3 to 10 detection regions. The

performance of MDSQ with an optimized 3-level soft-

detector is also included for comparison in Fig. 3. The

Lagrange parameter values needed to perform MDSQ

design are determined using the erasure probabilities γ1

and γ2 [7]. MCOQD is seen to perform better than

MDSQ for all channel SNRs. The gain is due to the

fact that MCOQD provisions for channel symbol errors

whereas MDSQ does not.

SNR Gaussian Laplacian
(dB) N = 3 N = 4 N = 10 N = 3 N = 4 N = 10

0 0.84 0.62 0.28 0.74 0.53 0.24
1 0.78 0.54 0.22 0.61 0.50 0.20
2 0.66 0.46 0.20 0.55 0.41 0.18
3 0.56 0.39 0.19 0.45 0.39 0.16
4 0.43 0.33 0.16 0.41 0.33 0.14
5 0.36 0.31 0.15 0.39 0.31 0.13
6 0.33 0.25 0.14 0.33 0.25 0.12
7 0.29 0.22 0.11 0.29 0.22 0.10
8 0.26 0.19 0.09 0.28 0.21 0.07

TABLE I

OPTIMIZED DETECTOR STEP SIZE δ = ∆√
Eb

FOR THE NUMBER OF

DETECTION REGIONS N1 = N2 = N

We compare the performance of regular MCOQD,

with fixed encoder and decoder, and MCOQD with
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Fig. 3. Performance of MDSQ and MCOQD with R1 = R2 = 1
bit per source sample per Rayleigh fading channel (bpss/channel). (a)
Memoryless Gaussian source. (b) Memoryless Laplacian source.

adaptive decoder and fixed encoder. Fig. 4 shows that the

improvement of adaptive MCOQD over regular MCOQD

increases with channel mismatch. At 8 dB actual channel

SNR, for instance, the MCOQD designed for 8 dB SNR

outperforms the MCOQD designed for 0 dB SNR by 1.1

dB SDR. Adaptive MCOQD deduces this performance

gap by 0.3 dB. Hence, the bulk of the performance gap

can be attributed to encoder mismatch.
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