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Alzheimer’s	
  Disease:	
  An	
  Epidemic	
  (?)	
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Worldwide	
  Epidemic	
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Change	
  in	
  Number	
  of	
  Deaths	
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Something	
  Needs	
  to	
  be	
  Done	
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Neuropsychological	
  examina=on	
  

•  Mini-­‐mental	
  state	
  
examina=on	
  (MMSE)	
  

•  Montreal	
  Cogni=ve	
  
Assessment	
  (MoCA)	
  

•  70-­‐90%	
  accuracy	
  
•  Lower	
  for	
  MCI	
  (mild	
  
cogni=ve	
  impairment)	
  

•  Not	
  very	
  useful	
  for	
  
prognosis/progression	
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•  Definite	
  diagnosis	
  requires	
  
post-­‐mortem	
  histopatho-­‐
logical	
  analysis	
  of	
  the	
  brain	
  

Definite	
  Diagnosis	
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What	
  is	
  Known	
  
•  Beta	
  amyloid	
  plaques	
  

– “S=cky”	
  protein	
  fragments	
  
that	
  are	
  normally	
  broken	
  
down	
  and	
  eliminated	
  

– AD:	
  block	
  cell	
  signaling	
  
and	
  blood	
  flow	
  

•  	
  Neurofibrillary	
  tangles	
  
– Microtubule	
  transports	
  
nutrients	
  through	
  nerve	
  
cell	
  à	
  tau	
  protein	
  
abnormal	
  with	
  AD	
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How	
  is	
  Technology	
  Helping?	
  

•  S-­‐MRI:	
  detect	
  =ssue	
  loss	
  
•  PET:	
  tracer	
  binds	
  to	
  beta	
  
amyloid	
  

•  SPECT	
  perfusion:	
  assess	
  
regional	
  blood	
  flow	
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Drawbacks	
  &	
  Mo=va=on	
  for	
  EEG	
  

•  Tissue	
  loss	
  and	
  atrophies	
  represent	
  late	
  stage	
  of	
  
neural	
  dysfunc=on	
  à	
  early	
  detec=on	
  (?!?)	
  

•  Expensive	
  equipment,	
  experienced	
  personnel	
  
– Low-­‐income	
  countries,	
  rural	
  and	
  remote	
  areas	
  (?!?)	
  
– Urban	
  areas:	
  long	
  wai=ng	
  =mes	
  (e.g.,	
  in	
  Canada:	
  up	
  to	
  
6	
  months	
  for	
  non-­‐emergency	
  MRI)	
  

•  EEG:	
  becer	
  suited	
  to	
  reveal	
  func=onal	
  impairment	
  
as	
  it	
  reflects	
  the	
  electrical	
  ac=vity	
  of	
  neural	
  =ssue,	
  
evident	
  long	
  before	
  actual	
  =ssue	
  loss	
  occurs.	
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Classical	
  EEG	
  Findings	
  (c.	
  1980’s)	
  
Res$ng-­‐Awake	
  

•  “Slowing”	
  of	
  the	
  EEG:	
  
increase	
  in	
  EEG	
  delta/
theta	
  power	
  and	
  a	
  
decrease	
  in	
  alpha/beta	
  

•  Inter-­‐hemispheric	
  
disconnect	
  (alpha/beta)	
  

•  Non-­‐linear	
  dynamics:	
  
decrease	
  in	
  complexity	
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ERP’s	
  



New	
  EEG	
  Features	
  
Hemodynamics	
  involved	
  

in	
  informa=on	
  
processing	
  via	
  neural	
  
ac=vity	
  modula$on	
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Healthy	
  vs.	
  Alzheimer’s	
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Experimental	
  Results	
  (22:AD,	
  12:C)	
  

Feature' Accuracy'
(%)''

Sensi2vity''
(%)'

Specificity'
(%)''

Coherence((I)' 70.6( 86.4( 41.7(

Power((II)' 85.3( 90.9( 75.0(

PME((III)' 88.4( 90.9( 83.3(

I(+(III' 79.4( 86.4( 66.7(

II(+(III' 94.1% 96.5% 91.7%

I(+(II(+(III' 91.2( 96.5( 83.3(
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(Not)	
  Automated	
  and	
  (Not)	
  Portable	
  

•  Mul=-­‐channel	
  medical	
  (research)	
  grade	
  EEG	
  
– 20,	
  32,	
  64	
  channels	
  
– Not	
  portable	
  

•  Require	
  visual	
  inspec=on	
  of	
  ar=fact-­‐free	
  epochs	
  
– Remove	
  movement,	
  muscle,	
  eye-­‐blink	
  ar=facts	
  
– Labor-­‐intensive,	
  requires	
  experienced	
  personnel	
  
– Not	
  automated	
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Automated	
  and	
  Portable	
  
•  Seven-­‐channel	
  portable	
  system	
  
•  Automated	
  Ar=fact	
  Removal	
  (AAR)	
  

•  Relevance	
  vector	
  machine	
  (RVM)	
  vs	
  SVM	
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Fig. 4. RVM performance as a function of class membership threshold X .
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Fig. 5. Distribution plot of per-participant epochs classified as having more
(unshaded) or less (shaded) than 75% class membership.

A closer look at the selected features from Ta-
ble I shows that three features show up in both the
manually-selected as well as wICA-processed top feature
pool, namely: “O1 O2 theta pwr”, “PZ alpha pwr”, and
“F3 F4 delta cohe mag”, thus showing the robustness of the
bipolar O1-O2 and F3-F4 signals, along with the PZ alpha
subband to EEG artefacts. Table III shows the distribution
of the selected features across the different feature classes,
brain regions, frequency subbands, and electrode montages.

TABLE II. PERFORMANCE COMPARISON OF SEMI-AUTOMATED
BENCHMARK AND FULLY-AUTOMATED AD DIAGNOSTIC SYSTEMS.

System Accuracy (%) Sensitivity (%) Specificity (%)
Benchmark 84.7 75.0 91.4

SVM 81.4 75.0 85.7
RVM 84.7 79.2 88.6

TABLE III. DISTRIBUTION OF SELECTED FEATURES USED WITH THE
MANUALLY-SELECTED AND FULLY-AUTOMATED SYSTEMS DIVIDED BY

FEATURE SET, BRAIN REGION, FREQUENCY BAND, AND MONTAGE.

Systems
Manual wICA-AAR

NUMBER OF FEATURES PER FEATURE SET
spectral power 10 14

coherence 3 4
modulation 11 6

NUMBER OF FEATURES PER BRAIN REGION
frontal 8 9
central 4 3

temporal 3 6
parietal 3 4
occipital 6 2

NUMBER OF FEATURES PER FREQUENCY BAND
delta 6 7
theta 5 4
alpha 3 4
beta 10 9

NUMBER OF FEATURES FROM VIRTUAL CHANNELS
interhemispheric 5 6

From the manually-selected epochs, the amplitude modulation
features are selected most often, followed by the spectral power
based features. With the automated system, on the other hand,
the spectral power features dominate, thus suggesting that am-
plitude modulation features may be sensitive to wICA artefact
removal. Relative to brain regions, similar results are obtained
with the two systems, with the exception of the temporal and
occipital regions. For the manually-selected epochs, 3 of the
24 top features belonged to the temporal regions, whereas 6
belonged to the occipital region. With the wICA-processed
epochs, on the other hand, this distribution was reversed with
6 of the top features belonging to the temporal region and
only 2 to the occipital region. Regarding frequency bands
and electrode montage (original versus virtual bipolar), the
two systems obtained similar distributions and no effect could
be observed from the automated artefact removal procedure.
Combined, these findings suggest that a fully automated AD
diagnostic system can be implemented with accuracies inline
with those obtained with a semi-automated system relying on
human intervention.

IV. CONCLUSION

This paper has proposed a fully-automated EEG-based
AD diagnosis system based on automatic artefact removal,
automated feature selection, and relevance vector machine
(RVM) based classification. Experimental results show the
proposed system outperforming a benchmark algorithm based
on support vector machines (SVM) and manually-selected
artefact-free EEG epochs in terms of diagnostic accuracy and
sensitivity. The proposed automated RVM-based system is also
shown to outperform an automated SVM-based variant with
the advantage of providing class membership probabilities. By
providing such richer pool of information to clinicians, more
accurate and earlier Alzheimer’s disease assessments may be
enabled, as well as disease progression monitoring.
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A closer look at the selected features from Ta-
ble I shows that three features show up in both the
manually-selected as well as wICA-processed top feature
pool, namely: “O1 O2 theta pwr”, “PZ alpha pwr”, and
“F3 F4 delta cohe mag”, thus showing the robustness of the
bipolar O1-O2 and F3-F4 signals, along with the PZ alpha
subband to EEG artefacts. Table III shows the distribution
of the selected features across the different feature classes,
brain regions, frequency subbands, and electrode montages.
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BENCHMARK AND FULLY-AUTOMATED AD DIAGNOSTIC SYSTEMS.
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Benchmark 84.7 75.0 91.4

SVM 81.4 75.0 85.7
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TABLE III. DISTRIBUTION OF SELECTED FEATURES USED WITH THE
MANUALLY-SELECTED AND FULLY-AUTOMATED SYSTEMS DIVIDED BY

FEATURE SET, BRAIN REGION, FREQUENCY BAND, AND MONTAGE.

Systems
Manual wICA-AAR

NUMBER OF FEATURES PER FEATURE SET
spectral power 10 14

coherence 3 4
modulation 11 6

NUMBER OF FEATURES PER BRAIN REGION
frontal 8 9
central 4 3
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parietal 3 4
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NUMBER OF FEATURES PER FREQUENCY BAND
delta 6 7
theta 5 4
alpha 3 4
beta 10 9

NUMBER OF FEATURES FROM VIRTUAL CHANNELS
interhemispheric 5 6

From the manually-selected epochs, the amplitude modulation
features are selected most often, followed by the spectral power
based features. With the automated system, on the other hand,
the spectral power features dominate, thus suggesting that am-
plitude modulation features may be sensitive to wICA artefact
removal. Relative to brain regions, similar results are obtained
with the two systems, with the exception of the temporal and
occipital regions. For the manually-selected epochs, 3 of the
24 top features belonged to the temporal regions, whereas 6
belonged to the occipital region. With the wICA-processed
epochs, on the other hand, this distribution was reversed with
6 of the top features belonging to the temporal region and
only 2 to the occipital region. Regarding frequency bands
and electrode montage (original versus virtual bipolar), the
two systems obtained similar distributions and no effect could
be observed from the automated artefact removal procedure.
Combined, these findings suggest that a fully automated AD
diagnostic system can be implemented with accuracies inline
with those obtained with a semi-automated system relying on
human intervention.

IV. CONCLUSION

This paper has proposed a fully-automated EEG-based
AD diagnosis system based on automatic artefact removal,
automated feature selection, and relevance vector machine
(RVM) based classification. Experimental results show the
proposed system outperforming a benchmark algorithm based
on support vector machines (SVM) and manually-selected
artefact-free EEG epochs in terms of diagnostic accuracy and
sensitivity. The proposed automated RVM-based system is also
shown to outperform an automated SVM-based variant with
the advantage of providing class membership probabilities. By
providing such richer pool of information to clinicians, more
accurate and earlier Alzheimer’s disease assessments may be
enabled, as well as disease progression monitoring.



Experimental	
  Results	
  

•  35	
  AD,	
  24	
  C	
  
•  Benchmark:	
  visual	
  inspec=on	
  +	
  SVM	
  

•  Advantages	
  over	
  visual	
  inspec=on:	
  	
  
–  Improved	
  sensi=vity	
  rela=ve	
  to	
  benchmark	
  
–  Informa=on	
  from	
  frontal	
  electrodes	
  kept	
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A closer look at the selected features from Ta-
ble I shows that three features show up in both the
manually-selected as well as wICA-processed top feature
pool, namely: “O1 O2 theta pwr”, “PZ alpha pwr”, and
“F3 F4 delta cohe mag”, thus showing the robustness of the
bipolar O1-O2 and F3-F4 signals, along with the PZ alpha
subband to EEG artefacts. Table III shows the distribution
of the selected features across the different feature classes,
brain regions, frequency subbands, and electrode montages.

TABLE II. PERFORMANCE COMPARISON OF SEMI-AUTOMATED
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From the manually-selected epochs, the amplitude modulation
features are selected most often, followed by the spectral power
based features. With the automated system, on the other hand,
the spectral power features dominate, thus suggesting that am-
plitude modulation features may be sensitive to wICA artefact
removal. Relative to brain regions, similar results are obtained
with the two systems, with the exception of the temporal and
occipital regions. For the manually-selected epochs, 3 of the
24 top features belonged to the temporal regions, whereas 6
belonged to the occipital region. With the wICA-processed
epochs, on the other hand, this distribution was reversed with
6 of the top features belonging to the temporal region and
only 2 to the occipital region. Regarding frequency bands
and electrode montage (original versus virtual bipolar), the
two systems obtained similar distributions and no effect could
be observed from the automated artefact removal procedure.
Combined, these findings suggest that a fully automated AD
diagnostic system can be implemented with accuracies inline
with those obtained with a semi-automated system relying on
human intervention.

IV. CONCLUSION

This paper has proposed a fully-automated EEG-based
AD diagnosis system based on automatic artefact removal,
automated feature selection, and relevance vector machine
(RVM) based classification. Experimental results show the
proposed system outperforming a benchmark algorithm based
on support vector machines (SVM) and manually-selected
artefact-free EEG epochs in terms of diagnostic accuracy and
sensitivity. The proposed automated RVM-based system is also
shown to outperform an automated SVM-based variant with
the advantage of providing class membership probabilities. By
providing such richer pool of information to clinicians, more
accurate and earlier Alzheimer’s disease assessments may be
enabled, as well as disease progression monitoring.



19 



Res=ng-­‐Awake	
  vs	
  Mental	
  Ac=vity	
  

20 



Hippocampal	
  Ac=va=on	
  

•  Working	
  memory	
  
•  ERD/ERS	
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9

Figure 4. Average topographical maps of the ERD% for NS, MCI and AD groups (from top to
bottom) on alpha band and 175-325ms time interval, during execution of the 2-back task (match trials).
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Mul=modal	
  Neuroimaging	
  
•  EEG	
  +	
  fNIRS	
  (near-­‐infrared	
  
spectroscopy)	
  

•  Areas	
  coincide	
  with	
  alpha	
  
modula=on	
  features	
  
– Neurovascular	
  coupling	
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Conclusions	
  

•  Alzheimer’s	
  disease	
  quickly	
  becoming	
  an	
  epidemic	
  
•  New	
  biomarkers	
  are	
  being	
  developed,	
  neuro-­‐
imaging	
  is	
  playing	
  an	
  important	
  role	
  
– EEG	
  stands	
  out	
  for	
  its	
  poten$al,	
  lower	
  cost,	
  portability	
  

•  Amplitude	
  modula=on	
  insights	
  à	
  new	
  features	
  for	
  
diagnosis	
  and	
  disease	
  progression	
  monitoring	
  

•  Mul=modal	
  solu=ons	
  à	
  new	
  biomarkers	
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Ques=ons?	
  

ʺ″If the brain were so simple we could understand it, 
we would be so simple we couldn’tʺ″  

‐ Lyall Watson 
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