

EEG-based Alzheimer's Disease Diagnosis: Where We are at Now and Where We are Heading *Tiago H. Falk*

Institut National de la Recherche Scientifique

Energy, Materials and Telecommunications (INRS-EMT)

Montreal, Quebec, Canada

Presentation Overview

- Preamble on Alzheimer's Disease (AD)
- Existing diagnostic tools
- Drawbacks and motivation for EEG
- Where are we now
- Where we are heading
- Conclusions

Alzheimer's Disease: An Epidemic (?)

The Alzheimer's Disease Epidemic

Worldwide Epidemic

Change in Number of Deaths

5

Something Needs to be Done

Neuropsychological examination

- Mini-mental state examination (MMSE)
- Montreal Cognitive Assessment (MoCA)
- 70-90% accuracy
- Lower for MCI (mild cognitive impairment)
- Not very useful for prognosis/progression

Definite Diagnosis

 Definite diagnosis requires post-mortem histopathological analysis of the brain

What is Known

- Beta amyloid plaques
 - "Sticky" protein fragments that are normally broken down and eliminated
 - AD: block cell signaling and blood flow
- Neurofibrillary tangles
 - Microtubule transports nutrients through nerve cell → tau protein abnormal with AD

How is Technology Helping?

- S-MRI: detect tissue loss
- PET: tracer binds to beta amyloid
- SPECT perfusion: assess regional blood flow

Drawbacks & Motivation for EEG

- Tissue loss and atrophies represent late stage of neural dysfunction → early detection (?!?)
- Expensive equipment, experienced personnel
 - Low-income countries, rural and remote areas (?!?)
 - Urban areas: long waiting times (e.g., in Canada: up to 6 months for non-emergency MRI)
- EEG: better suited to reveal functional impairment as it reflects the electrical activity of neural tissue, evident long before actual tissue loss occurs.

Classical EEG Findings (c. 1980's)

Resting-Awake

- "Slowing" of the EEG: increase in EEG delta/ theta power and a decrease in alpha/beta
- Inter-hemispheric disconnect (alpha/beta)
- Non-linear dynamics: decrease in complexity

	Lat P300 Fz	Amp P300 Fz	Lat P300 Pz	Amp P300 Pz
Controls	431.78 (21.3)	5.69 (1.85)	445.13 (27.3)	7.20 (3.25)
MCI	537.48 (60.7)	3.50 (1.42)	528.94 (73.4)	4.51 (1.61)
AD	564.31 (6.1)	3.13 (1.59)	568.37 (77.4)	5.24 (1.74)

New EEG Features

gamma

Healthy vs. Alzheimer's

Experimental Results (22:AD, 12:C)

Feature	Accuracy (%)	Sensitivity (%)	Specificity (%)
Coherence (I)	70.6	86.4	41.7
Power (II)	85.3	90.9	75.0
PME (III)	88.4	90.9	83.3
+	79.4	86.4	66.7
+	94.1	96.5	91.7
+ +	91.2	96.5	83.3

(Not) Automated and (Not) Portable

- Multi-channel medical (research) grade EEG
 20, 32, 64 channels
 Not portable
- Require visual inspection of artifact-free epochs
 - Remove movement, muscle, eye-blink artifacts
 - Labor-intensive, requires experienced personnel
 - Not automated

Automated and Portable

Raw BSS wICA

• Seven-channel portable system

Fp1

• Automated Artifact Removal (AAR)

• Relevance vector machine (RVM) vs SVM

° (

Experimental Results

- 35 AD, 24 C
- Benchmark: visual inspection + SVM

System	Accuracy (%)	Sensitivity (%)	Specificity (%)
Benchmark	84.7	75.0	91.4
SVM	81.4	75.0	85.7
RVM	84.7	79.2	88.6

- Advantages over visual inspection:
 - Improved sensitivity relative to benchmark
 - Information from frontal electrodes kept

Resting-Awake vs Mental Activity

Alzheimer's disease

Hippocampal Activation

- Working memory
- ERD/ERS

Multimodal Neuroimaging

- EEG + fNIRS (near-infrared spectroscopy)
- Areas coincide with alpha modulation features
 - Neurovascular coupling

Conclusions

- Alzheimer's disease quickly becoming an epidemic
- New biomarkers are being developed, neuroimaging is playing an important role

- EEG stands out for its potential, lower cost, portability

- Amplitude modulation insights → new features for <u>diagnosis</u> and disease <u>progression</u> monitoring
- Multimodal solutions \rightarrow new biomarkers

Acknowledgements

- Collaborators
 - Francisco Fraga, UFABC, Brazil
 - Renato Anghinah, USP, Brazil
 - Natalie Phillips, Concordia, Canada
 - Veronique Bohbot, McGill, Canada
- Students
 - Raymundo Cassani, INRS, Canada
 - Lucas Trambaiolli, UFABC, Brazil
- Funding: INRS (start-up program)

Questions?

"If the brain were so simple we could understand it, we would be so simple we couldn't" - Lyall Watson

