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Abstract
While considerable work has been done to characterize the
detrimental effects of channel variability on automatic speaker
verification (ASV) performance, little attention has been paid
to the effects of room reverberation. This paper investigates the
effects of room acoustics on the performance of two far-field
ASV systems: GMM-UBM (Gaussian mixture model - univer-
sal background model) and i-vector. We show that ASV per-
formance is severely affected by reverberation, particularly for
i-vector based systems. Three multi-condition training meth-
ods are then investigated to mitigate such detrimental effects.
The first uses matched train/test speaker models based on esti-
mated reverberation time (RT) values. The second utilizes two-
condition training where clean and reverberant models are used.
Lastly, a four-condition training setup is proposed where mod-
els for clean, mild, moderate, and severe reverberation levels
are used. Experimental results show the first and third multi-
condition training methods providing significant gains in per-
formance relative to the baseline, with the latter being more
suitable for practical resource-constrained far-field applications.
Index Terms: Automatic speaker verification, GMM-UBM,
i-vector, far-field, reverberation time.

1. Introduction
Channel variability and/or train-test mismatch have been re-
garded as serious detrimental factors for automatic speech and
speaker recognition technologies. To overcome these limita-
tions, several approaches have been proposed. In the feature do-
main, for example, techniques such as cepstral mean subtraction
(CMS) [1], relative spectral (RASTA) processing [2], and fea-
ture mapping [3] have been used to minimize additive and con-
volutional channel distortions. In the scoring domain, in turn,
normalization techniques such as Hnorm and Tnorm have been
developed, to name a few [4]. Recently, joint factor analysis has
been used to separate inter-speaker and intersession variability
from augmented feature spaces (e.g., Gaussian mixture model
supervectors) [5]. State-of-the-art automatic speaker verifica-
tion (ASV) systems, today, are based on extensions to the joint
factor analysis framework and constitute the so-called i-vectors,
obtained after a total variability feature projection (e.g., [6, 7]).

While a lot of attention has been given to channel variabil-
ity, limited work has been done to address the issue of room
acoustics in far-field ASV, particularly regarding room rever-
beration. It is known that in far-field speech applications, the
signal captured by the microphone is comprised of the direct
path signal, plus numerous reflections off the walls, floor, and
ceiling. Reverberation causes colouration of the speech sig-
nal, plus temporal smearing, which severely degrades the per-

formance of several automated speech technologies [8, 9], par-
ticularly ASV. To overcome these detrimental effects, different
approaches have been proposed. As examples for speaker ver-
ification and identification, microphone arrays [10], score nor-
malization [11], feature normalization [8], and alternative fea-
ture representations [12, 13, 14] have been proposed. By far the
most popular method of combating room reverberation, how-
ever, has been multi-condition training, where speaker mod-
els are developed for different reverberation levels and the best
model is found during verification via a reverberation time (RT)
estimator [11, 15, 16, 17]. Moreover, in these previous studies,
synthetic room impulse responses (RIRs) and traditional fea-
tures (mel-frequency cepstral coefficients, MFCC) have been
commonly explored (e.g., [16]). To the best of the authors’
knowledge, only one recent study has investigated the effects of
reverberation on i-vectors corrupted by low reverberation levels
using synthetic RIRs [18]. As such, the effects of real recorded
RIRs, as well as higher reverberation levels, are still unknown.

Having this said, the goal of this paper is three-fold. First,
we explore the gains achieved with three multi-condition train-
ing paradigms to combat the effects of reverberation on ASV
performance. More specifically, we investigate the widely-used
method of train-test reverberation level matching, as well as
two alternate methods: i) the use of clean and “global” rever-
berant speech models, and ii) the use of clean, low, medium,
and high reverberation level speaker models. In both cases,
an in-house RT regressor/classifier is used [19]. Second, we
test these multi-condition strategies using the ubiquitous MFCC
features, as well as the more recent i-vector features. Lastly,
we explore the performance of the above-mentioned feature and
multi-condition training combinations using RIRs recorded in a
varechoic chamber with a wide range of RT between 0.39− 2 s.

The remainder of this paper is organized as follows. Section
2 gives an overview on the two tested ASV paradigms, namely
GMM-UBM and i-vector, as well as presents the three multi-
condition training setups. Section 3 describes the experimental
setup and Section 4 presents the experimental results and a dis-
cussion. Lastly, conclusions are presented in Section 5.

2. Baseline and multi-condition training
Typical text-independent speaker verification systems are com-
prised of a front-end for feature extraction, a modelling method
for speaker enrolment (e.g., universal background model,
UBM) and a final decision process (e.g., likelihood scoring in
GMM-UBM systems). In the sections to follow, two baseline
systems are described – GMM-UBM and i-vector – as well as
three multi-condition training paradigms to combat the effects
of room reverberation on ASV performance.



Figure 1: Block diagram of the GMM-UBM framework.

Figure 2: Block diagram of the i-vector framework.

2.1. Baseline ASV: GMM-UBM

The block diagram of the GMM-UBM baseline is depicted by
Fig. 1. MFCC features, computed via a set of 24 triangular
(mel) bandpass filters, were used. More specifically, 19 cep-
stral coefficients, along with log-energy, delta and double-delta
coefficients were used to generate a 60-dimensional feature
vector. With the GMM-UBM framework, Gaussian mixture
model (GMM) parameters were obtained via the well-known
expectation-maximization (EM) algorithm [20]. In our exper-
iments, a 64-component diagonal covariance matrices GMM
was used; we found this value to strike a good balance between
model complexity and system performance on our dataset. Dur-
ing enrolment, speaker models are obtained via Maximum a
Posteriori (MAP) adaptation. Scoring and decision are then per-
formed based on log-likelihood thresholding.

2.2. Baseline ASV: i-vector

The block diagram of the i-vector based baseline system is
depicted by Fig. 2. I-vectors are obtained from a joint fac-
tor analysis (JFA) framework [5, 21] where the means of the
speaker-dependent MAP-adapted GMMs (trained on the above-
mentioned 60-dimensional features) are combined into the so-
called supervector M. The basic assumption is that the super-
vector conveys speaker dependent, speaker independent, chan-
nel dependent, and residual components. Each component can
then be represented by a low-dimensional set of factors, which
operate along the principal dimensions (also known as eigen-
dimensions) of the corresponding component. Mathematically,
this is represented as M = m + V y + Ux + Dz, where
m is the speaker and channel-independent supervector, V the
speaker eigenvoice matrix, D the diagonal residual matrix, U
is the eigen-session matrix, and y, z, x correspond to the low-
dimensional eigenvoice, speaker-specific eigen-residual, and

eigen-channel factors, respectively. More recently, the above
framework was modified to include a total variability space pro-
jection, i.e., M = m+ Tw, where m remains the mean super-
vector extracted from the universal background model, T cor-
responds to a rectangular low-rank matrix and w is a random
vector with normal distribution, i.e., the so-called i-vectors [7].

Within the i-vector framework, the decision process con-
sists of computing the similarity between the target speaker fac-
tors and the test speaker factors. To achieve this goal, several
post-processing steps have been proposed, including linear dis-
criminant analysis (LDA) to maximize the between-class vari-
ance and minimize the within-class variance, as well as Gaus-
sian probabilistic linear discriminant analysis (PLDA) [22]. De-
cisions are then made based on log-likelihood thresholding of
PLDA hyperparameters. In our experiments, we used 50 total
factors in the total variability matrix, obtained via UBM and
Baum-Welch statistics, as suggested in [7, 23]. LDA is then
used to reduced the dimensionality to 35. In the dataset used in
the experiments herein, these values showed to be optimal.

2.3. Multi-condition training

2.3.1. Train/test RT matching

The first multi-condition training scheme represents what has
been typically proposed in the literature, i.e., reverberation time
matching between training and testing conditions. This setup
is depicted by Fig. 3a and typically involves an RT regressor to
estimate the RT of the test file. During training, UBM models
are obtained under different reverberation time conditions. The
enrolment consisted of the same reverberation time conditions
used previously for modelling. During verification, the models
that more closely match the RT of the test data are used. Such an
approach, despite its popularity, has some disadvantages. First,
it requires storage of several speaker models, thus may place a
burden on resource-constrained ASV applications. Second, RT
estimation may be sensitive to additive ambient noise, thus gen-
erating erroneous RT estimates in practical everyday settings.
Lastly, train-test RT matching may result in overly optimistic
performances, considering that a perfect reverberant matching
very difficult in real world applications. In our experiments, the
RT estimator described in [19] was used, as it has been shown to
be robust to high reverberation levels with and without ambient
noise [24].

2.3.2. Two-condition training: clean and reverberant models

To overcome some of the issues mentioned above of train/test
RT matching (particularly that of model storage and generaliz-
ability to everyday scenarios), a two-condition training scheme
is tested where speaker models are obtained for clean speech
and for reverberant speech (see Fig. 3b). Unlike the RT-matched
case, here a global model of reverberant speech is used encom-
passing training data corrupted by varying RT values. In our
experiments, we use RT values in the range of 300-2000 ms to
generate the ”global” reverberant speaker models and also for
enrolment. A support vector machine classifier, as proposed in
[19], is used to classify between clean and reverberant speech.

2.3.3. Four-condition training: clean, low-, medium-, and
high-reverberation speaker models

The third multi-condition training setup tested involves an inter-
mediate between the two previously-mentioned schemes. More
specifically, a four-condition training scheme is used where
speaker models of clean speech and speech corrupted by low
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Figure 3: Block diagram of (a) train/test RT-matched, (b) two-,
and (c) four-condition multi-condition training paradigms.

(RT≤ 0.7 s), medium (0.7 <RT< 1s), and high levels
(RT≥ 1 s) of reverberation are used (see Fig. 3c). As before, the
enrolment process considered the same RTs used for training
and a support vector machine classifier is used to detect which
class the test speech file belongs to.

3. Experimental setup
3.1. Speech database

In our experiments, the CHAINS corpus was used [25, 26]. The
database comprises recordings of 36 subjects, including male
and female, with different English accents. Six different speak-
ing styles are provided (e.g., normal, whisper, fast) but we used
only the clean normal speaking style data recorded in a profes-
sional studio. Each speaker read 37 prepared texts. The first
four files (read paragraphs) were used for training and resulted
in roughly 120 seconds of speech material per speaker. The
remaining 33 speech files were used for testing and provided
approximately 60 seconds of speech material per speaker. Data
was originally sampled at 16 kHz with 16-bit resolution, but
downsampled to 8 kHz and energy normalized to -26 dBov prior
to feature extraction using the ITU-T P.56 voltmeter [27].

3.2. Recorded RIR and reverberant material generation

Room impulse responses (RIRs) were obtained in a professional
varechoic chamber (length 7 m, width 9 m x height 3.5 m) avail-
able at the École de Technologie Supérieure in Montreal, Que-
bec, Canada. Measurements were conducted using four pow-
ered loudspeakers positioned in the lower corners of the room.

(a)

(b)

Figure 4: Varechoic reverberation chamber (a) without and (b)
absorbers to control reverberation time values

RIRs were recorded using the chirp method with a microphone
placed in the centre of the room. Absorbers were placed around
the reverberation chamber to result in ten different RT values:
0.39, 0.45, 0.55, 0.63, 0.75, 0.87, 1.04, 1.15, 1.41, and 2.03 sec-
onds. To generate the reverberant speech files used in our ex-
periments, the clean speech files from the CHAINS corpus were
convolved with the recorded room impulse responses. Noticed
that the same RIRs were used for both training and testing. For
our experiments, the MSR identity toolbox was used [28].

4. Experimental Results and Discussion
Figures 5 (a-d) depict the equal error rates (EER) obtained with
the baseline, train/test RT-matched, two-condition, and four-
condition training setups, respectively. As can be seen with
the baseline setup (Fig. 5a), the GMM-UBM outperforms the i-
vector system across the majority of the investigated RT values.
As expected, significant performance degradation is observed
with an increase in RT. Table 1 presents statistics of the ob-
tained EERs for the four tested scenarios. For clean conditions,
an EER of 0.5% was seen. This increased to 18% at RT= 2 s
for the GMM-UBM and 21% for the i-vector based systems.

In the train/test RT-matched scenario (Fig. 5b), an in-
verse relationship was found and the i-vector outperformed the
GMM-UBM ASV system across all tested RTs. In the i-vector
case, the EER remained below 1% up to an RT= 0.75 s and
increased to 2% at RT= 2 s. This amounts to a significant rela-
tive reduction of up to 90% in EER. For the GMM-UBM case,
on the other hand, EER stayed below 6% up to an RT= 1 s and
increased to 8% at the highest RT value. Despite the poor per-
formance relative to the i-vector based system, the RT-matched
setup significantly improved performance and a relative reduc-
tion of 56% could be seen at this highest RT value. With this
setup, the RT estimator from [19] achieved a correlation of 0.96
with true RT and an error of 12 ms. Despite these promising
results, an RT-matched system is not very practical, due to e.g.,



(a) baseline GMM-UBM and i-vector ASV

(b) train/test RT-matched

(c) two-condition training scenario
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Figure 5: Equal error rate (EER) performance comparison.

GMM-UBM i-vector
Setup min max x σ2 min max x σ2

Baseline 0.5 17.96 10.80 17.99 0.18 20.93 11.55 32.54
RT-matched 0.5 7.77 4.04 5.13 0.18 3.33 1.36 1.12
2-condition 0.5 15.27 10.63 14.95 0.18 9.50 4.83 7.47
4-condition 0.5 6.88 4.71 3.18 0.18 5.61 3.17 2.75

Table 1: GMM-UBM and i-vector performance for baseline,
train/test RT-matched, two-, and four-condition training setups.

storage and time-varying RT limitations; in such cases, the two-
and four-condition training schemes are more appropriate.

For the two-condition training setup (Fig. 5c), the gains rel-
ative to the baseline were not as substantial as with the RT-
matched system. For the GMM-UBM, EER had a significant
drop in performance even for low RT values. As an example,
from clean to RT= 0.39 s, the EER went from 0.5% to 15%
(97% relative increase). Performance, however, did remain sta-
ble across all tested RT values and ranged between 11 and 15%.
For the i-vector system, the EER increased almost linearly with
RT. At RT= 2 s, an EER of 9% was achieved, thus still signifi-
cantly better than the baseline (57% relative reduction).

Lastly, for the four-condition training setup (Fig. 5d) it was
observed that the gap between GMM-UBM and i-vector perfor-
mances was small, with the i-vector slightly outperforming the
GMM-UBM system. In both cases, results were fairly stable
and varied between 2-7% across all tested RT values. In both
cases, the performance was best between 0.7≤RT≤1 s, suggest-
ing the mid-reverberation models captured speaker character-
istics more reliably. Overall, the four-condition training setup
provided the most practical solution to hands-free far-field ASV,
as it provided reliable results across a wide range of RT values
(EER<7% for GMM-UBM; EER<6% for i-vector) without the
burden of multi-model storage and computational complexity.
In these experiments involving only reverberation, the RT clas-
sification stage was shown to be accurate and with a small foot-
print; additional studies are needed to test RT-level classification
performance in the presence of additive ambient noise.

5. Conclusion

This paper has investigated the effects of reverberation on
two automatic speaker verification systems: one based on the
GMM-UBM paradigm and another on the burgeoning i-vector
features. In a baseline setup, the i-vector based systems were
shown to be most sensitive to the detrimental reverberation
effects. Three multi-condition training setups were then in-
vestigated: train/test reverberation time (RT)-matched, two-
condition (clean and reverberant), and four-condition (clean,
low-, medium-, and high-reverberation levels) training. While
the RT-matched scenario resulted in the best overall perfor-
mance, with the i-vector outperforming the GMM-UBM sys-
tem, the four-condition training setup resulted in the most prac-
tical solution for resource constrained applications, achieving
reliable performances across a wide range of RT values.
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