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Abstract—It is known that channel variability compromises
automatic speaker recognition accuracy. However, little attention
has been given so far to the detrimental effects encountered under
reverberant environments. In this paper, we focus on the issue
of automatic speaker verification (ASV) under several levels of
room reverberation. Alternative auditory inspired features are
explored. Specifically, we investigate whether the performance of
the so-called modulation spectral features (MSFs) can overcome
the well-known mel-frequency cepstral coefficients (MFCCs).
Experiments were conducted with an ASV system based on the
state-of-the-art i-vector. The main contribution of this paper is
to verify if MSFs combined with i-vectors are able to present the
same performance encountered in the literature regarding speech
recognition and speaker identification systems in reverberant
environment.

I. INTRODUCTION

The acoustic signal captured in an enclosed environment
is subject of reverberation due to the reflection on walls, floor
and ceilings. This effect can degrade speech quality, affecting
not only human speech perception but also the performance
of many applications, such as those related to hands-free com-
munication. Although speaker verification systems can achieve
high accuracies under matched conditions (i.e., when testing
and training data are obtained under the same circumstances),
it is still a great challenge to maintain the same performance for
real world applications where channel variability is inevitable.

Many efforts have been made in order to mitigate channel
effects. Feature compensation techniques such as cepstral mean
subtraction (CMS) [1] and RASTA [2] are meant to remove
distortions artifacts from the feature vector before speaker
enrollment takes place. Another formulation, related to the
decision process, aims at reducing score variability through
score normalization techniques such as Hnorm and Tnorm. Ap-
plication examples and details on these methods can be found
in [3]. A third approach that deals with channel effects regards
modelling speakers considering session variability [4]. Joint
Factor Analysis (JFA) has offered interesting performance by
modelling separately inter-speaker and inter-session variability
assuming that speaker factors remain the same for different
recordings while channel factors vary [5]. More recently, an
extension of JFA has been proposed in [6]. The new low-
dimensional space, named total variability or i-vector, has been
demonstrating state-of-the-art results and is motivated by the
fact that channel factors also contains information about the
speaker identity [7].

Modulation spectral features (MSFs) have been consid-
ered as an alternative to maintain performance in reverberant
environments. The experiments carried out in [8] showed
that, although MSFs offered lower performance when clean
speech was used during the training and testing phase, they
outperformed the results obtained by using other auditory
inspired features, such as Perceptual Linear Prediction (PLP),
when room reverberation was taken into account. Authors
in [9] demonstrated the benefit of using MSFs for speech
recognition and argue that their robustness against reverber-
ant environments occurs because amplitude modulations are
less susceptible to distortions caused by reverberation when
compared to the fine structure of speech signals.

In [10] authors have shown that modulation bands ranging
between 3 and 15 Hz are robust to increasing levels of
reverberation time (T60). They compared the performance of
a speaker identification system based on MFCCs to a system
based on MSFs. Results showed that the speaker identification
system proposed, based on MFCCs, offered better performance
for low levels of room reverberation (i.e., T60 up to 0.4s),
with its performance decaying severely for higher levels of
room reverberation. Their system, based on MSFs, outper-
formed MFCCs for reverberation time higher than 0.4s. In the
experiments described herein, we made a similar comparison,
but now considering a different dataset submitted to different
environmental conditions and, most importantly, using the
burgeoning total variability (i-vector) paradigm instead of the
traditional GMM-UBM (Gaussian mixture model - Universal
background model) framework.

This paper is organized as follows. Section 2 gives an
overview on speaker verification systems (ASV) based on
i-vector and describes the feature extraction steps and also
the decision process used in this work. Section 3 discusses
reverberation, presents the database used in this paper and also
describes the experimental setup. The results and discussion
are presented in section 4. Section 5 concludes the paper.

II. ASV SYSTEM

As described in Fig. 1, ASV systems are composed by a
front-end responsible for the feature extraction, a modelling
method used for speaker enrollment and a decision process
usually based on likelihood score for GMM-UBM and on
cosine similarity for i-vector. Such systems aim to solve the
following question: Is the speaker who he claims to be? In



Fig. 1: Block diagram of automatic speaker verification.

other words, given an utterance and a claimed identity, verify if
the claimer is the genuine speaker or an impostor. In this work,
we consider a text-independent speaker verification using the
i-vector framework, based on the MSR Identity Toolbox [11].

A. Feature extraction

1) Mel-Frequency Cespstral Coefficients (MFCC): As pre-
processing steps, speech signals were downsampled to 8 kHz,
pre-emphasized and normalized at -26 dBov (dB overload)
and framed at every 10-ms using a 20-ms Hamming window.
After applying the FFT, a set of 24 triangular bandpass filters
obeying the Mel scale were used before the discrete cosine
transform (DCT) [12], according to the following formula:

xn =
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[Ym]cos

[
πn

M

(
m− 1

2

)]
, n = 1, 2, 3, ..., P, (1)

where xn is the nth mel-cepstrum coefficient and Ym
refers to the log-energy of the mth filter output. The
set of P coefficients forms the MFCC feature vector,
−→x = {x1, x2, x3, ..., xp}.

In our experiments, we considered M = 24 and P = 19,
which resulted in 19 cepstral coefficients plus the global log-
energy. Delta and double-delta coefficients were then computed
from the MFCCs and log-energy features, resulting in a 60-
dimensional feature vector.

2) Modulation Spectral Features (MSF): As depicted in
Figure 2, five signal processing steps were involved in our
computation of modulation spectral features. During the pre-
processing step, speech signals were downsampled either to
8 kHz or 16 kHz, as it will be observed in the experiments
we performed. Also, an energy-thresholding voice activity
detection (VAD) is used followed by an energy normalization
to -26 dBov (dB overload).

Next, the speech signal passes through a bank of 23 critical-
band gammatone filters, emulating the process performed by
the cochlea. The first filter in the filterbank is centred at
125 Hz and the last one close to half the sampling rate (i.e.
approximately 3.5 kHz and 7 kHz, respectively for 8 kHz and
16 kHz as sampling rates) [10]. Filter bandwidths are defined
by the equivalent rectangular bandwidth (ERB), which is given
by

ERBj =
fj
Qear

+Bmin (2)

where fj represent the center frequency of the j-th filter and
Qear and Bmin are, respectively, set to 9.265 and 24.7 [10].
The signal sj(n), originated by j-th filter, is then used to com-
pute the temporal envelope ej(n) through Hilbert Transform,
defined as

ej(n) =

√
sj(n)2 +H{sj(n)}2 (3)

Following, temporal envelopes ej(n) are multiplied every
32-ms by a 256-ms Hamming window. The discrete Fourier
transform of the temporal envelope is computed in order to
obtain the modulation spectrum. Dropping the variable n for
simplicity, we have

Ej(m; f) = |F(ej(n))| (4)

where m represents the m-th frame obtained after every
Hamming window multiplication and f designates modulation
frequency. Lastly, an auditory-inspired modulation filterbank is
used to represent the modulation frequencies into eight bands,
denoted as Ej,1, ..., Ej,k, ..., Ej,8, where j represents the j-th
critical band signal and k is the k-th modulation filterbank
output.

B. Total Variability

In JFA [5], [13], given an utterance, the speaker and chan-
nel components are represented by a supervector M, defined
as follows

M = m+ V y + Ux+Dz (5)

where m is the speaker and session-independent supervector,
being V the eigenvoice matrix and D the diagonal residual,
both representing the speaker subspace (s = m + V y +Dz).
U is the eigensession matrix and it represents the session
subspace (c = Ux).

Instead of two distinct spaces for modelling speaker and
channel variability, as briefly described above, authors in [7]
propose the use of a simple space, referred to as total variability
space. The reasoning behind this new approach relies on the
fact that channel factors estimated by JFA contains information
about speakers too, as shown in the experiments performed
by them [7]. Hence, for a given utterance, both speaker and
session components represented by (7) can be rewritten as

M = m+ Tw (6)

where m is the mean supervector extracted from the universal
background model, T corresponds to a retangular low-rank
matrix and w is a random vector with normal distribution. The
so-called hidden variable w contains the component factors and
is referred to as the identity vector (i.e., the i-vector) [7].

Within the i-vector framework, which is depicted in Fig. 3,
the decision process in the total variability space consists ba-
sically in computing the similarity between the target speaker
factors and the test speaker factors. In our experiments, we



Fig. 2: Block diagram describing the signal processing steps used to extract the modulation spectral features.

Fig. 3: Block diagram of the i-vector framework. Adapted from
[11].

used 501 total factors defined by the total variability matrix
T which was obtained from the combination of the UBM
and the Baum-Welch statistics [7][14]. The i-vectors are then
submitted to Linear Discriminant Analysis (LDA) which seeks
to maximizes the between class variance and minimize the
within class variance. The total factors are reduced to a 35-
dimensional vector. Following the LDA, EM algorithm is
used to obtain a Gaussian Probabilistic Linear Discriminant
Analysis (PLDA) model [15]. The decision process is base on
the log-likelihood and is defined [16] as

score = log
p (x1, x2 | H0)

p (x1 | H1) p (x2 | H1)
(7)

where x1 and x2 are the i-vectors involved in a trial and are
represented by PLDA hyperparameters. H0 and H1 represent
the hypothesis described in section 2.

III. EXPERIMENTAL SETUP

In this section, we present the details of the experiments
conducted in order to compare the performance of both fea-
tures (i.e. mel-frequency cepstral coefficients and modulation
spectral features) under different T60. Their performances are
analyzed under the i-vector framework.

1We have not found any significant improvements by considering higher
values for the total factors.

Fig. 4: Room reverberation scheme.

A. Reverberation

In reverberant environments the speech signal propagates
from a source (i.e., a speaker) to one or more microphones as
depicted in Fig. 4. The direct-path is the acoustic propagation
path between the speaker and the microphones with no
reflections. A number of delayed and attenuated versions of
the original signal reaches the microphones superimposing the
original signal [17]. Assuming a linear time-invariant system
(LTI), the reverberant signal rm(n) captured by the m-th
microphone can be modelled by the convolution of the source
speech signal s(n) and the acoustic room impulse response
hm(n), as shown by

rm(n) = s(n) ∗ hm(n) + vm(n), m = 1, ...,M. (8)

where m denotes the m-th microphone placed in a reverberant
room and vm(n) represents the environment noise received by
the m-th microphone. In this work, the reverberant speech were
generated by convolving recorded room impulse responses
with clean speech signals.

B. Database Description

The clean speech part of Chains corpus [18] was used
in our experiments. It features recordings of 36 subjects,
including male and female with different accents. Six differ-
ent styles are provided: SOLO, SYNCHRONOUS, RETELL,
RSI, WHISPER, FAST. The first three speaking styles were
recorded in a professional studio and the speakers were placed
in a booth while recording. The last three styles were recorded
in a quiet office environment. For this study, we used only
SOLO (i.e., normal speech). Each speaker read 37 prepared
text which generated 37 distinct speech files. The content read
was always the same independently of the type of vocal effort
used by the subject. The normal style was obtained with the
subjects reading each text at a comfortable rate. During the



enrollment phase, the four first speech files of each speaker
were used for training, which added up to roughly 120 seconds.
The remaining 33 speech files were used for testing and it
provided approximately 60 seconds of speech.

Room impulse response (RIR) were obtained in a pro-
fessional chamber (length 7 m, width 9 m x height 3.5 m).
Measurements were conducted using four powered loudspeak-
ers positioned in the lower corners of the room. The RT60

was measured and recorded by a microphone placed in the
center of the room and absorbers were used to manage the
reverberation level. RT60 values collected include: 0.39, 0.45,
0.55, 0.63, 0.75, 0.87, 1.04, 1.15, 1.41 and 2.03.

Throughout the experiments conducted here, the trials
involved clean speech and also reverberant speech obtained
by convolving the testing set (i.e., the last 33 sentences of
the Chain Corpus for each speaker) with different levels of
reverberation, characterized by all the RIR previously listed.

C. Three Modulation Bands

Three modulation channels, Ej,k (k = 1, 2, 3) were
considered in the first experiment. Since each one of these
channels operates over all outputs of a 23-channel gammatone
filterbank, a 69-dimensional energy vector is generated per
frame. Each frame is normalized by the maximum modulation
energy among modulation bands k = 1, 2, 3. Following the
normalization, principal component analysis (PCA) is applied
in order to maximize the variance of the data by projecting it
onto a 23-dimensional space.

For enrollment, as it occurred in the previous experiments,
the first four speech files of each speaker presented in the
Chains corpus were used, leading to approximately 120 sec-
onds of data. Only clean speech was used for training. In the
verification phase, the remaining 33 speech files were used
for testing. Clean speech files were corrupted with different
reverberation levels during testing. The same procedure will
apply for the next two experimental setups.

D. Four Modulation Bands

In the second approach, four modulation channels were
considered, which led to a 92-dimensional energy vector per
frame. As has happened previously, each frame is normalized
by the maximum modulation energy among modulation bands
k = 1, 2, 3, 4. After, PCA was applied, projecting the data onto
a 46-dimensional space.

E. Five Modulation Bands

Finally, we investigated the use of five modulation chan-
nels, which led to a 115-dimensional energy vector per frame.
As usual, each frame is normalized by the maximum modula-
tion energy among modulation bands k = 1, 2, 3, 4, 5. Principal
component analysis (PCA) is then applied, which projected the
data onto a 60-dimensional space.

IV. RESULTS AND DISCUSSION

In Figure 5, results of the aforementioned experiments
are presented and compared to the results obtained with the
baseline system, which consisted of using MFCCs as features.

(a) 3 MSF bands

(b) 4 MSF bands

(c) 5 MSF bands

Fig. 5: Equal error rate vs T60 using MFCC and MSF.



Setup min max x σ2

MFCC 0.18 20.93 11.55 32.54
MSFs / 3 bands / 8 kHz 9.18 33.40 19.36 31.59
MSFs / 3 bands / 16 kHz 9.62 34.25 20.50 34.74
MSFs / 4 bands / 8 kHz 9.26 37.54 21.59 43.98
MSFs / 4 bands / 16 kHz 9.62 32.22 20.42 31.17
MSFs / 5 bands / 8 kHz 9.05 30.55 18.90 24.45
MSFs / 5 bands / 16 kHz 9.91 44.15 26.80 79.21

TABLE I: I-vector performance for different number of modulation
bands and two different sampling rate.

Clean speech was used during the enrollment process and
reverberant speech for testing. MFCCs offered the best results
compared to the MSFs, as can be also seen in Table I. We
observed only a slightly difference between the two sampling
rates considered for MSFs, with 8 kHz offering better results,
except when 4 modulation bands are used.

Overall, MSFs failed to outperform MFCCs, on the con-
trary to what have been shown in other studies. However,
those studies were not directly related to speaker recognition
[8][9] nor to speaker verification [10] and therefore universal
background models were not involved in their experiments,
which may be one possible explanation for MSFs not being
able to outperform MFCCs. Notice in Figure 5 that when
compared to the baseline results (i.e., the results from MFCCs),
as the level of reverberation time increases, the plots from
our experiments offer similar slopes, which suggest that MSFs
were equally affected by the increase of T60.

Notwithstanding, MSFs performance seems stable over the
0.4-1.4 range, which is aligned with results obtained in [10],
where authors had considered a smaller range (0-1s) and
thus there is a possibility that their system based on MSFs
would degrade with RT60 higher than 1s, as has happened
to our results, although we cannot state it for sure. Actually,
our experiments did not reveal any advantage on the use of
MSFs instead of the well-known MFCCs, as was observed on
the experiments performed in [10]. Beside the fact we used
different datasets and room impulse responses, authors in [10]
investigated speaker identification and not speaker verification
as was done in this study. Another possibility to explain
these opposite outcomes may be due to the replacement of
traditional UBM-GMM models by a state-of-the-art i-vector
based ASV system, for i-vectors are intrinsically built to deal
with intersession variability. Our hypothesis is that this upgrade
from UBM-GMM to total variability framework has improved
the overall system performance and the potential gain that
could be provided using the MSFs alone has somehow been
masked by this substitution.

V. CONCLUSION

In this paper, we evaluated the performance of an ASV
system under the use of two distinct auditory inspired features.
The classic mel-frequency cepstral coefficients and the so-
called modulation spectral features were compared. Results
showed that, for the speaker verification system considered
in this work, MSFs are equally affected by reverberation time
and have their performance degraded more than MFCCs as
the level of T60 increases. Moreover, different number of

modulation bands offered about the same results. Future work
could consider the possibility of combining both features,
in order to find out whether MSFs provide complementary
information to MFCCs, i.e., would a system that combines the
two modalities perform better than each modality alone.
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