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Abstract— We propose a novel approach to objective speech
quality measurement using feature mining and Gaussian mixture
models (GMMs). A large pool of perceptual distortion features
is extracted from the speech signal and data mining techniques
are used to sift out the most relevant feature variables from the
pool. We examine using multivariate adaptive regression splines
(MARS), classification and regression trees (CART), a hybrid
CART-MARS scheme, and the sequential forward selection (SFS)
algorithm for data mining. For our speech databases, the SFS
algorithm provides best performance with a five-feature, three-
component GMM. A reduction of 21.7% in root-mean-squared
mean opinion score estimation error is obtained in comparison
with ITU-T P.862 PESQ.

I. I NTRODUCTION

The telecommunications industry is going through a phase
of rapid development. New services and technologies emerge
continuously. Customers now have the freedom of selecting
from as array of telecommunications services at affordable
cost. Faced with offering voice services over increasingly het-
erogenous network connections, the evaluation of speech qual-
ity is becoming critically important for the service provider,
serving as an instrument for monitoring and improvement of
quality of service and network capacity.

Traditionally, the most reliable way to measure the quality
of a speech signal was through the use of subjective speech
quality assessment tests such as MOS (mean opinion score)
tests [1]. These tests are highly unsuitable for online quality
measurement and are also very expensive and time consuming.
The research described below is motivated by the fact that
objective methods have replaced subjective testing, allowing
computer programs to automate speech quality measurement
in real time, making them suitable for field applications.
The International Telecommunications Union ITU-T P.862
standard, also known as Perceptual Evaluation of Speech
Quality (PESQ) [2] is the latest objective quality measurement
standard algorithm. Nevertheless, the algorithm still falls short
of the accuracy that can be obtained from subjective listening
tests with sizable listener panels.

In [3] and [4], an approach is introduced that uses data
mining techniques to improve the accuracy of auditory-model
based quality measurement; significant performance improve-
ment over PESQ was reported. Here we extend the work of
[3] and [4] by proposing a novel, simple yet robust, method of
speech quality estimation based on Gaussian mixture models
(GMMs).

TABLE I

SUBJECTIVE RATING SCALE FOR THE MEAN OPINION SCORE - MOS

Rating Speech Quality Level of Distortion

5 Excellent Imperceptible
4 Good Just perceptible but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying but not objectionable
1 Unsatisfactory Very annoying and objectionable

A large pool of feature measurements is created from the
distortion surface between the original speech signal and the
degraded speech signal. First, we use four statistical data min-
ing methods, multivariate adaptive regression splines (MARS)
[5], classification and regression trees (CART) [6], a hybrid
CART-MARS technique, and the sequential forward selection
(SFS) algorithm [7] to sift out good features. We then model
the joint density of these features (x) with the subjective MOS
(y) as a Gaussian mixture. We use this model to derive the
minimum mean squared error (MMSE) estimate,E[y|x], of
the subjective MOS value. Simulations show that our approach
outperforms PESQ by as much as 21.7% in root-mean-squared
MOS estimation error.

II. OBJECTIVE SPEECHQUALITY ESTIMATION

Traditionally, the only way to measure the perceived quality
of a speech signal was through the use of subjective testing,
i.e, a group of qualified listeners are asked to rate the speech
they had just heard according to the scale given in Table I.
The average of the listener scores is the subjective MOS. This
is the most reliable method of speech quality assessment but
it is very expensive and time consuming, making it unsuitable
for frequent or rapid applications. Hence, models have been
developed to identify audible distortions through an objective
process based on human perception. This objective method
can be implemented by computer programs and can be used
in real time measurement of speech quality.

Several perceptual models for comparing the original and
the coded speech signal have been proposed [8]–[11]. The
quality of classical coding algorithms is estimated by wave-
form matching using signal-to-noise ratio (SNR) and the
segmental SNR. These are easy to implement, have straight-
forward interpretations and can estimate the quality of speech
in waveform-preserving systems. But newer generation speech



coders do not preserve the waveform so these measures are of
little relevance.

Researchers have employed models of human auditory
perception in their estimation of perceived speech quality. It is
known that the peripheral auditory system of human prepro-
cesses information and “compact” feature extraction is done
in higher-level brain functions. The human decision is based
on this compacted data. An adequate model should emulate
this biological preprocessing and higher-level functions, and
deliver ratings that have high correlations with the subjective
results. The preprocessing part is relatively well understood
but the higher-level brain functions are difficult to model.

A. GMMs for Speech Quality Estimation

Gaussian mixture models have been used extensively in
speech processing, especially in speech recognition. The rea-
sons behind this widespread use are not coincidental: (1)
univariate Gaussian densities have a simple and concise rep-
resentation, depending uniquely on two parameters, mean
and variance, and (2) the Gaussian mixture distribution is
universally studied and its behaviors are widely-known [12].

At a cost of extra parameters, GMMs improve on Gaussians
by allowing asymmetry and multimodality. In principle, GMM
can approximate any probability density function to an arbi-
trary accuracy. Letu be anK-dimensional vector, a Gaussian
mixture density is a weighted sum ofM component densities

p(u|µ,Σ, α) =
M∑

i=1

αi.bi(u) (1)

where αi ≥ 0, i = 1, ..., M are the mixture weights, with∑M
i=1 αi = 1, and bi(u), i = 1, ..., M are theK-variate

Gaussian densities with mean vectorµi and covariance matrix
Σi.

GMMs can assume several different forms, depending on
the type of covariance matrices. The two most widely used are
full and diagonal covariance matrices. IfK is the dimension of
the feature vector andM the number of Gaussian components,
then the number of parameters that have to be estimated during
training is given byM

2 (K2 + 3K + 2) for full matrices and
M(2K +1) for diagonal matrices. The effect of usingM full
covariance matrices can be equivalently obtained by using a
larger set of diagonal covariance Gaussians [13].

The GMM for speech quality estimation is built on percep-
tual feature variables. The variables are obtained from mining
a large pool of candidate feature variables. These candidate
features are obtained by classifying perceptual distortions into
a variety of contexts, as proposed in [3].

First, the clean and degraded signals are split into 7 fre-
quency bands. The spectral power distortion between the clean
and degraded speech signals is then found. Time segmentation
labels the speech frames as “active” or “inactive”. Active
frames are further classified into voiced or unvoiced. The total
distortion of each frame is given severity classifications of
“low”, “medium”, or “high” by simple thresholding. Distortion
samples in time-frequency bins are thus labelled according to
its frequency band, time-segmentation type, and severity level.

Additional contexts are created where each subband is
further labelled with the rank order obtained by ranking the
7 distortions in a frame in the order of decreasing magni-
tude. Weighted mean and root-mean distortions, probability of
each frame type and the lowest-frequency band and highest-
frequency band energy of the clean speech frames are also
used to form a pool of 209 candidate features.

Statistical data mining is used to sift out the most relevant
variables from the pool of variables. The top-5 most important
feature variables as ranked by MARS, CART, a CART-MARS
hybrid configuration, or the SFS algorithm will be used here.
We model the joint density of the top-5 most important feature
variables (x) with the subjective MOS (y) as a Gaussian
mixture given by (1) withu = [y,x]T . We then predict the
value of the subjective MOS,y, given the observed values of
the5-dimensional feature vector,x. The MMSE estimate ofy
given x, namelyE[y|x], is [14]

E[y|x] =
M∑

i=1

hi(x)[µy
i + Σyx

i (Σxx
i )−1(x− µx

j )] (2)

where hi(x) denotes the probability that theith Gaussian
component of the marginal predictor densityp(x) generated
the vectorx and is given by

hi(x) =

αi

|Σxx
i |1/2

e

(
− 1

2 (x−µx
i )T (Σxx

i )−1(x−µx
i )

)

M∑

k=1

αk

|Σxx
k |1/2

e

(
− 1

2 (x−µx
k)T (Σxx

k )−1(x−µx
k)

) . (3)

The covariance matrix of theith GMM component is

Σi =
(

Σyy
i Σyx

i

Σxy
i Σxx

i

)
.

If the covariance matrices are restricted to be diagonal, the
least squares estimate simplifies to

E[y|x] =
M∑

i=1

hi(x)µy
i . (4)

This restriction has to be used with care, as it can result in
large estimation errors when there exists a significant amount
of correlation between the predictor and the response variables,
i.e. Σyx

i are far from zero.

III. E XPERIMENTAL RESULTS

We compare our algorithm to PESQ using MOS labelled
speech databases. The performance of the algorithms is as-
sessed by the correlation between subjective MOSwi and
objective MOSyi, using Pearson’s formula

R =
∑N

i=1(wi − w̄)(yi − ȳ)√∑N
i=1(wi − w̄)2

∑N
i=1(yi − ȳ)2

(5)

wherew̄ is the average ofwi, andȳ is the average ofyi. MOS
measurement accuracy is assessed using the root-mean-square
MOS error (RMSE)

RMSE =

√∑N
i=1(wi − yi)2

N
. (6)
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Fig. 1. Subjective MOSversusObjective MOS for CART selected features
using five diagonal Gaussian components.

In [3], RMSE is shown to be the sum of unexplained
variance in the regression model and the bias error between
subjective MOS and objective MOS. The calculation of R does
not take into consideration this bias error; therefore, unless the
estimates are unbiased or all suffer from the same bias, RMSE
is a more realistic measure of estimator performance.

The speech databases include seven multilingual databases
in ITU-T P-series Supplement 23, two wireless databases
and a mixed wireline-wireless database. We combine these
ten databases into a global database and then use 10-fold
cross validation to measure performance. The global database
is randomly divided into 10 data sets of almost equal size.
Training and testing is performed in 10 trials, where, in each
trial, one of the data sets serves as a test set and the remaining
9 are combined to serve as a training set. Each data set serves
as a test set only once. The ten resulting R’s and RMSE’s are
averaged to obtain the cross-validation R and RMSE.

The parameters of the GMM are estimated via the EM
algorithm [15]. The algorithm iterations produce a sequence
of models with monotonically nondecreasing (log-)likelihood
values. Though the EM algorithm converges to a maximum
likelihood it has a few drawbacks: it is a greedy algorithm
and may converge to a local maximum and not the global
maximum. GMMs produced by the EM algorithm are, con-
sequently, sensitive to initialization. We use thek-means
algorithm [16] to initialize the GMM parameters.

Initial tests show that by using diagonal covariance matrices
only a modest improvement over PESQ is achieved. We
attribute this to the fact that the features selected by CART
and/or MARS have significant correlation amongst them and
the use of a small number of diagonal Gaussian components
does not compensate for this. When looking at the graph of
the subjective MOSversus objective MOS for one of the
cross-validation trials, we see the penalty of using diagonal
matrices (vide Fig. 1). The prominent vertical alignment of
points suggests poor prediction performance. The alignment

TABLE II

PERFORMANCECOMPARISON FORCART SELECTED VARIABLES - FULL

COVARIANCE MATRICES

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
GMM-2 0.8569 4.69 0.3892 15.39
GMM-3 0.8611 5.20 0.3860 16.09

TABLE III

PERFORMANCECOMPARISON FORMARS SELECTED VARIABLES - FULL

COVARIANCE MATRICES

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
GMM-2 0.8683 6.10 0.3773 17.52
GMM-3 0.8780 6.35 0.3783 17.98

disappears and better prediction performance is obtained when
full covariance matrix is used, as we show below.

With full covariance matrices the number of parameters that
need to be estimated scales quadratically with the feature space
dimension. When dealing with limited data, as in our case,
severe problems arise due to singularities and local maxima in
the log-likelihood function. Many regularization schemes have
been proposed to improve the smoothness and generalization
properties of the estimated density function. Here we avert
ill-conditioning by adding a small diagonal matrix, namely
εIn×n, to each covariance matrix in each M-step iteration of
the EM algorithm. Typically, the optimal value forε is not
known a priori. A simple procedure used here is to varyε
over a range of values and choose the value that leads to the
best performance on the validation data set. We variedε from
0.000001 to 1 and the value that led to best performance was
ε = 0.001.

The performance results for the feature variables selected by
CART and MARS are shown in Tables II and III, respectively.
GMM-i stands for a Gaussian mixture model withi compo-
nents and % indicates percentage increase in R or percentage
reduction of RMSE relative to PESQ. The result for PESQ is
based on using a 3rd order regression polynomial trained on
the global database. On our data, this method outperformed
the PESQ-LQ mapping proposed in [17]. The 5 most salient
feature variables are listed in Table IV for all four data mining
techniques. The variables are defined in the Appendix.

With the correlation between features properly modelled, an
average improvement of 4.95% and 15.74% in R and RMSE,
respectively, is achieved for CART selected features. Further
improvement can be seen for MARS selected features; an
average improvement of 6.23% and 17.75% in R and RMSE
is achieved.

As can be seen, only voiced frames are captured by the
features selected using CART. In whispered speech, all nor-
mally voiced phonemes are not vocalized, i.e. they become
unvoiced. Such situation, though rare, would cause problems
for these features. It can be inferred that the estimator is not
sensitive to degradation in the unvoiced regions and the non-



TABLE IV

FEATURE VARIABLES

Rank MARS CART CART-MARS SFS

1 I P VUV V WM I P VUV V O 1
2 V B 5 V O 2 REF 1 I P VUV
3 V B 2 V O 1 V WM 2 REF 1
4 V B 2 2 V RM V B 5 V B 2
5 U P VUV V O 0 U P V O 5

TABLE V

PERFORMANCECOMPARISON FORCART-MARS SELECTED VARIABLES -

FULL COVARIANCE MATRICES

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
Full GMM-2 0.8662 5.83 0.3766 18.13
Full GMM-3 0.8734 6.71 0.3724 19.04

speech regions. The CART-MARS hybrid scheme uses CART
to pre-screen features from the feature candidate pool. The
features selected by CART are then used as a smaller feature
candidate pool for MARS to sort through. By doing this,
features can be drawn from voiced and unvoiced frames. An
average improvement of 6.27% and 18.6% in R and RMSE
is achieved. The performance results for the feature variables
selected by this hybrid scheme are shown in Table V.

Careful analysis of the features selected by the three afore-
mentioned data mining schemes led us to believe that further
improvement is possible. A certain trend was noted within
the feature variables as shown in Table VI. The table is
composed of the subjective MOS, five MARS-selected features
(x1 to x5), and objective MOS ( ˆMOS) estimated using three
Gaussian components for six distinct test speech signals. Note
that all six test signals have the same subjective MOS, i.e., they
have been rated as having, on average, the same objectionable
level of distortion. It can be inferred that these six speech
signals belong to the same “distortion class” and their feature
values should not vary considerably.

Table VI shows that the features selected by MARS, on the
contrary, vary considerably and this variation is reflected on the
estimates. For test vector 2 we obtain an estimate of 3.598, i.e.
an error of 2.8%, but for test vector 6 we obtain an estimate of
2.308, an error of 34%! We conjecture that in order to obtain
further improvement better features would have to be used,
preferably features that do not vary considerably within the
same distortion class. To this end, we use the SFS algorithm.
The algorithm starts with the variable that is most correlated
with the target variable, and at each step adds a new variable
that, together with the previous ones, most accurately predicts
the target. A partial F-test is incorporated in the algorithm
such that the variables chosen have small variances within
each distortion class.

An improvement of 8% and 21.7% in R and RMSE is
provided by the SFS algorithm. The performance results of
this scheme are shown in Table VII. Table IV shows that the
features selected by the SFS algorithm are gleaned from the

TABLE VI

SUBSET OF THE VALIDATION SET

# MOS ˆMOS x1 x2 x3 x4 x5

1 3.5 3.843 0.312 0.421 0.662 0.517 1.072
2 3.5 3.598 0.328 0.471 0.703 0.521 1.011
3 3.5 3.037 0.666 0.885 1.194 0.918 1.680
4 3.5 2.309 0.766 1.091 1.538 1.169 2.226
5 3.5 3.038 0.334 0.504 0.895 0.753 1.691
6 3.5 2.308 0.902 1.101 1.448 1.222 2.402

TABLE VII

PERFORMANCECOMPARISON FORSFSSELECTED VARIABLES - FULL

COVARIANCE MATRICES

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
Full GMM-2 0.8834 7.93 0.3649 20.67
Full GMM-3 0.8840 8.00 0.3602 21.70

top three features selected by MARS, CART, and the CART-
MARS hybrid scheme.

Figure 2 depicts a scatter plot of the subjective MOSversus
objective MOS for CART-MARS selected features, using a
GMM with three Gaussian components and full covariance
matrices. The data shown are for one of the cross-validation
trials. We see that the points are no longer aligned with the
vertical axis as in the case of diagonal covariance matrices.

A further method for measuring model performance is to
plot the distribution of absolute residual errors between objec-
tive and subjective MOS [18]. Figure 3 plots the distribution
of errors for SFS selected features for one of the trials. As can
be seen, almost 78% of the GMM estimates are within 0.50
unit of the subjective MOS.
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Fig. 2. Subjective MOSversusObjective MOS for CART-MARS selected
features using three full Gaussian components.
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Fig. 3. Residual error distribution for SFS selected features

IV. CONCLUSION AND FURTHER INVESTIGATION

A novel objective speech quality estimation algorithm is
proposed based on Gaussian mixture modeling. We have
investigated the usefulness of features selected by CART,
MARS, a CART-MARS hybrid scheme, and the SFS algo-
rithm. The SFS algorithm provided the best performance. The
CART-MARS hybrid scheme improved on CART by including
features from unvoiced frames. When using diagonal Gaussian
components we observed that our approach provided only
modest improvement over PESQ. This was attributed to the
fact that the five most salient feature variables selected by the
data mining techniques were correlated and the use of only
five diagonal components was not sufficient to compensate
for this. With full Gaussian components we have obtained an
improvement over PESQ of 8% and 21.7% in R and RMSE,
respectively.

While our results show that feature mining in conjunction
with GMM modelling can produce simple estimators that
outperform PESQ, the robustness of the estimators is also
an important issue. Our use of cross-validation to measure
performance offers some robustness. We are currently pur-
suing other avenues including the choice of feature variables.
Ongoing research examines feature selection that directly opti-
mizes GMM estimation performance. Currently, CART/MARS
selected features could be suboptimal for GMM estimation.
Deeper insights would shed light on why the approach works
well or not so well, and whether there is a gap relative to best
possible performance.

V. A PPENDIX

Here we describe the feature variables shown in Table IV.
The seven subbands are ordered from 0 to 6 and the three
distortion severity classes from 0 to 2.
• I P VUV: Ratio of the number of inactive frames to the

total number of active speech frames;
• U P VUV: Ratio of the number of unvoiced frames to

the total number of active speech frames;

• U P: Percentage of unvoiced frames in the speech files;
• REF 1: High-frequency spectral energy of reference sig-

nal;
• V B i: Distortion for subbandi of voiced frames, without

distortion severity classification;
• V B i j: Distortion for severity classj of subbandi of

voiced frames;
• V O i: Distortion for ordered subbandi of voiced frames,

without distortion severity classification;
• V WM i: Weighted mean distortion for severity classi

of voiced speech frames;
• V WM: Weighted mean distortion of voiced speech

frames;
• V RM: Root-mean distortion of voiced speech frames.
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