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Abstract— Automated electroencephalography (EEG) based
affect recognition has gained a lot of interest recently, with
clinical (e.g., in autism), human-computer interaction (e.g.,
affective brain-computer interfaces), neuromarketing, and even
multimedia (e.g., affective video tagging) applications. Typically,
conventional EEG features such as spectral power, coherence,
and frontal asymmetry have been used to characterize affective
states. Recently, cross-frequency coupling measures have also
been explored. In this paper, we propose a new feature set
that combines some of these aforementioned paradigms. First,
the full-band EEG signal is decomposed into four subband
signals, namely theta, alpha, beta, and gamma. The amplitude
modulation (or envelope) of these signals is then computed via
a Hilbert transform. These amplitude modulations are further
decomposed into 10 cross-frequency coupling patterns (e.g.,
gamma-beta coupling pattern). The mutual information be-
tween each of these ten patterns is then calculated for all inter-
hemispheric EEG electrode pairs. To gauge the effectiveness of
the newly-proposed feature set, the so-called DEAP database
was used. Experimental results show the proposed feature
set outperforming conventional ones for estimation of arousal,
valence, dominance, and liking affective dimensions. Gains of
up to 20% could be achieved when the proposed features
were fused with spectral power and asymmetry index features,
thus suggesting complementarity between spectral and spectro-
temporal features for automated affective state recognition.

I. INTRODUCTION

Automated affective state recognition has gained increased
interest lately, particularly in clinical [1], human-computer
interaction (HCI) [2], and multimedia/advertising quality-
of-experience perception [3], [4] applications. To this end,
both wearable sensors (e.g., galvanic skin response, heart and
breathing rates) and neuroimaging (e.g., electroencephalog-
raphy, EEG and near-infrared spectroscopy, NIRS) devices
have been explored, with EEG emerging as one of the most
prominent modalities [5]. The basic premise behind this so-
called ‘affective computing’ field is to provide humans and
machines with emotional intelligence that would otherwise
not be available. In the former scenario, it can provide
relatives and/or caregivers of e.g., children with autism spec-
trum disorders or individuals with emotional and behavioural
disorders cues about their emotional states, or vice-versa, as
well as multimedia services providers and ad agencies of
the emotional impact of their delivered content [4]. In the
latter setting, it can provide machines with cues that will
allow them to be perceived as more social, thus potentially
improving their popularity.
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With the advances in brain-computer interface (BCI) tech-
nologies witnessed over the last decade, tools have emerged
enabling so-called ‘affective BCIs’ [2]. The aim of affective
BCIs is to detect in real-time the affective states of its users
and use that information for either offline or online feedback.
In the latter setting, for example, existing applications for
affective BCIs include the monitoring of the user’s stress
level while using a brain speller or a robotic interface and
adjust the system’s response time accordingly, or the user’s
engagement level while playing a videogame and adapting
the game difficulty accordingly [6].

As mentioned previously, the use of EEG has been promi-
nent within the scope of affective BCIs and conventional
features have been widely used, such as EEG subband
frequency powers [7], wavelet coefficients [8], and spectral
coherence [9]. Moreover, frontal asymmetry [10] has also
been shown to be a useful indicator of emotional states,
particularly dispositional mood, temperament and reactivity
to emotionally provocative events. On the other hand, al-
ternate feature representations have been shown useful in
clinical settings but have received little attention within the
affective BCI community. Representative features include
EEG cross-frequency coupling [11] and spectro-temporal
neuromodulatory analysis [12].

In this paper, we propose to develop a new feature set that
encompasses several of the key paradigms mentioned above,
particularly inter-hemispheric interactions, cross-frequency
coupling, subband and spectro-temporal analysis. The over-
arching goal is to harness the advantages of each modality
into a single feature set for improved automated affective
state characterization. Special emphasis is placed on the
neuromodulatory aspect, motivated by the fact that “the
presence of amplitude modulation in bioelectrical processes
is of fundamental nature, since it is a direct reflection of
the control, synchronization, regulation and interaction in
the nervous and other body systems” [13]. Experiments
were performed on a publicly-available EEG dataset [7]
and results showed that the proposed features outperformed
conventional (baseline) spectral-based features by around
15% (relative) in emotion recognition accuracy. Moreover,
when the proposed features were fused with spectral power
and frontal asymmetry index parameters, relative gains of up
to 20% could be achieved over the baseline.

The remainder of this paper is organized as follows. Sec-
tion II provides the methodology used, including a descrip-
tion of the proposed and baseline features. Sections III and
IV describe the experimental setup and results, respectively.
Lastly, Section V presents the discussion and conclusions.



Fig. 1: Processing steps for proposed feature computation

II. METHODOLOGY

This section describes the proposed feature set and the
baseline features used for performance comparison.

A. Proposed feature set

Figure 1 depicts the signal processing steps involved in the
calculation of the proposed features. First, the full-band EEG
signal is decomposed into four frequency subband temporal
signals si(n), i = 1, . . . , 4 (theta, alpha, beta, and gamma,
respectively) using elliptic bandpass filters. Next, a Hilbert
transform is used to compute temporal amplitude envelopes
ei(n), i = 1, . . . , 4 for each of the four subband signals.
Temporal envelopes are further decomposed into four so-
called modulation frequency bands using 2nd order bandpass
filters in order to obtain amplitude-amplitude cross-frequency
coupling patterns as in [12]. The modulation frequency
bands have been empirically calculated to coincide with the
theta, alpha, beta, and gamma subbands to facilitate cross-
frequency coupling analysis. To distinguish the frequency
subbands from the modulation subbands, the latter is referred
to as m-theta (4-8 Hz), m-alpha (8-12 Hz), m-beta (12-30
Hz) and m-gamma (30-45 Hz). According to Bedrosian’s
theorem, only ten of these cross-frequency coupling patterns
(see Fig. 1) make mathematical sense [12]. We use the
notation A(Bi,m − Bj) to indicate the spectro-temporal
pattern for frequency subband Bi and modulation subband
m−Bj for i = 1, . . . , 4 and j = 1, . . . , 4.

These ten spectro-temporal patterns serve as the basis for
the proposed feature set. In order to incorporate asymmetry
cues into the proposed features, we use the mutual in-
formation (MI) between inter-hemispheric spectro-temporal
patterns. Unlike coherence, which measures only linear re-
lationships between spectral patterns, MI provides an esti-
mation of both linear and non-linear statistical dependencies
between time series. In order to compute MI, the probability

density function of the spectro-temporal patterns A(B,m−
B) (where indexes i and j were omitted without loss of
generality) were found via 2-D histogram analysis for two
given inter-hemispheric electrodes. With these probability
functions available, MI can be computed, by [14]:

MI(X;Y ) = H(X) +H(Y )−H(X,Y ), (1)

where H(X) (or H(Y )) indicates the marginal entropy of
variable X (or Y ) and H(X,Y ) indicates the joint entropy
of variables X and Y . Here, X and Y represent A(Bi,m−
Bj) for two inter-hemispheric electrodes, say X and Y. In
this study, the following fourteen electrode pairs were used:
Fp1-Fp2, AF3-AF4, F7-F8, F3-F4, FC5-FC6, FC1-FC2, T7-
T8, C3-C4, CP5-CP6, CP1-CP2, P7-P8, P3-P4, PO3-PO4,
and O1-O2. For the sake of notation, we refer to one such
mutual information feature as an inter-hemispheric amplitude
modulated interaction (IAMI) feature. A total of 140 such
IAMI features are extracted, corresponding to the ten spectro-
temporal patterns times the 14 inter-hemispheric pairs.

B. Baseline features

As baseline features, conventional EEG subband spectral
power and asymmetry indices were computed. A total of
184 baseline features were computed, including 128 spectral
power features (4 subbands × 32 electrodes) and 56 asym-
metry features (4 subbands × 14 inter-hemispheric electrode
pairs, as described in Section II-A).

III. EXPERIMENTAL SETUP

In this section, the database used, as well as feature
ranking and classifiers explored are described.

A. Affective stimuli database

The DEAP database [7] was used in the experiments. The
database is publicly available and is composed of EEG from
32 participants while they watched 40 1-minute long excerpts
of music videos, which were hand-picked to elicit different
emotional states. EEG signals were recorded using a 32-
channel BioSemi Active II device using the 10-20 interna-
tional electrode placement system. The pre-processed dataset
was used here, where the original dataset was downsampled
to 128 Hz, bandpass filtered from 4− 45 Hz, averaged to a
common reference, and had ocular artifacts removed using
principal component analysis as described in [7]. For each
music clip, participants rated their levels of arousal, valence,
dominance, and liking using a 9-point continuous scale.

B. Feature ranking and classifier design

Of the 140 extracted IAMI features and 184 baseline
features, some may not contribute significantly to the task
at hand. As such, we have ranked all features based on their
importance to each of the four classification tasks using the
minimum redundancy maximum relevance algorithm [15].
Feature ranking was done for the IAMI feature set alone,
the baseline feature set alone and the combined feature set.
For classification, a support vector classifier with default
parameters (regularization coefficient C = 1 and γ = 0.01)
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Fig. 2: Accuracy versus number of features for the baseline, proposed, and fused feature sets for the (a) arousal, (b) valence,
(c) dominance, and (d) liking affective dimensions.

and a radial basis kernel was used. For analysis, 25% of the
data were set aside for feature ranking and were selected such
that high and low class values were represented in the set
for the arousal, valence, dominance, and liking dimensions.
Since a 9-point scale was used, ratings greater or equal to
5 were classified as high and those below 5 as low. The
remaining 75% of the data were used, within a leave-one-
out cross-validation paradigm, to train and test the classifiers
to detect the low/high class values. Training was done with
the proposed and baseline feature sets alone, as well as fused.

IV. RESULTS

Figures 2(a)-(d) depict the accuracy of the SVM classifiers
for the arousal, valence, dominance, and liking affective
dimensions, respectively, as a function of number of features
used. Accuracy plots are shown for classifiers trained with
only the proposed IAMI features, only the baseline, as well
as the combined feature set. As can be seen, the proposed
features outperform the baseline ones for all four affective
dimensions, but with higher gains seen in the valence and
liking dimensions. Interestingly, these were the hardest di-
mensions to estimate with conventional EEG features in [7].

Table I, in turn, reports the highest accuracy obtained for
each feature set, along with the corresponding F1-score and
number of features with which such accuracy levels were
attained. Numbers within parentheses indicate the relative
gains attained when compared to the baseline results. As
can be seen, relative gains as high as 15% could be achieved
with the proposed features for the valence estimation task
and accuracy; 19% relative gain was seen in F1-score. Most
importantly, it can be observed that these gains were achieved
using 65% fewer features (53 vs 146). When the two feature
sets were combined, the largest relative gain was seen for
the arousal dimension where a 20% relative gain was seen
with only 20% more features (222 vs 180).

V. DISCUSSION

As seen from Figures 2, the proposed features clearly out-
perform the baseline ones for all four classification tasks. The
performance of classifiers trained on either the proposed or
baseline feature sets tended to stabilize at around 60 features,
but with the proposed feature set achieving substantially
higher accuracy. This was particularly true for the valence
and liking dimensions, which are typically the hardest ones



TABLE I: Performance comparison of feature fusion and
single modality for the four different emotion dimensions.
Numbers represented by “%” indicate the relative improve-
ment, in percentage, over the baseline.

Dimension Metric IAMI (%) Baseline Fusion (%)

Arousal
Accuracy 0.61 (11) 0.55 0.66 (20)
F1 Score 0.61 (11) 0.55 0.66 (20)

No. features 115 180 222

Valence
Accuracy 0.61 (15) 0.53 0.58 (10)
F1 Score 0.62 (19) 0.52 0.57 (10)

No. features 53 146 168

Dominance
Accuracy 0.59 (5) 0.56 0.64 (14)
F1 Score 0.59 (7) 0.55 0.62 (13)

No. features 82 48 253

Liking
Accuracy 0.60 (13) 0.53 0.62 (17)
F1 Score 0.61 (15) 0.53 0.61 (15)

No. features 65 79 215

to classify using conventional EEG features [7]. In fact, from
Table I for the valence dimension, roughly one third of the
features were needed to outperform the baseline features (53
vs 146 features). Such findings highlight the benefits of the
compact representation of the proposed features for reliable
affective state characterization. An in-depth analysis of the
top-60 selected features showed that roughly half came from
alpha-band spectro-temporal patterns. For the valence and
arousal dimensions, the A(alpha,m − theta) pattern was
the most prominent. Previous work has linked alpha-theta
coupling to memory [16], which in turn has been shown to
be modulated by valence and arousal [17], thus suggesting
that internal (affective) references may have played a key
role during the experiment. The proposed features seem to be
able to characterize such memory effects, unlike conventional
features, thus corroborating their complementarity.

With the fused feature set, in turn, performance stabiliza-
tion occurred once approximately 150 features were used
to train the classifiers. Careful analysis of these top-150
features showed that for the four dimensions, roughly 66%
of the features belonged to the IAMI set, with the majority
of the remaining features belonging to the EEG asymmetry
index set. Channel pairs that provided the most relevant
features were located in the frontal (Fp1-Fp2 and AF3-
AF4) and parietal regions (P7-P8 and P3-P4), thus corrob-
orating the importance of frontal asymmetry for affective
state recognition, particularly those involving high arousal
states [18]. From Table I, it can be seen that overall the
combined feature set resulted in the highest relative gains
compared to the baseline, with the exception of the valence
affective dimension which saw the IAMI features achieving
the best performance. Such findings may be an artifact of
the classifier design used here. Since the goal of the study
was to test the effectiveness of the proposed features at
classifying four different affective dimensions (or primitives),
only default SVM classifier parameters were utilized. It is
expected that additional gains in accuracy and F1 scores
can be achieved once the classifier parameters have been
optimized via grid search strategies.

VI. CONCLUSIONS
In this paper, a new feature set was proposed for automated

affective state recognition. The proposed features quantify
the mutual information between spectro-temporal amplitude
modulation patterns between inter-hemispheric electrodes,
thus were shown to result in a more compact and accurate
representation for affective state recognition. Experiments on
a publicly-available EEG dataset showed them outperforming
baseline features by as much as 20%.
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