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ABSTRACT

We propose a non-intrusive speech quality measurement al-
gorithm based on using Gaussian-mixture probability mod-
els of features of undegraded speech signals as an artificial
reference model of “clean” speech behaviour. The consis-
tency between the features of the test speech signal and the
reference model serves as an indicator of speech quality.
Consistency measures are calculated and mapped to an ob-
jective speech quality score using a multivariate adaptive re-
gression splines function. Simulation results show that the
proposed method offers accurate and yet low-complexity
measurement of speech quality.

1. INTRODUCTION

Speech quality is a major contributor to the end user’s per-
ception of quality of service. As networks become more
heterogeneous and complex, and new technologies interop-
erate with legacy equipment, identifying the root cause of
voice quality problems can be a challenging task. The eval-
uation and assurance of speech quality has, consequently,
become critically important for telephone service providers.

Voice quality is a subjective opinion, based on the user’s
reaction to the speech signal they actually heard. Subjec-
tive methods make use of a listener panel to measure speech
quality on an integer scale from 1 to 5, with 1 corresponding
to unsatisfactory speech quality and 5 corresponding to ex-
cellent speech quality. The average of the listener scores is
the subjective Mean Opinion Score, MOS [1]. This has been
the most reliable method of speech quality assessment but
it is very expensive and time consuming, making it unsuit-
able for frequent or rapid application. These shortcomings
can be overcome by using objective measurement methods,
which replace the listener panel with a computational al-
gorithm. Objective methods aim to deliver MOSs that are
highly correlated with the MOSs obtained from subjective
listening experiments.

Objective quality assessment tests can be classified as
intrusiveor non-intrusive. Intrusive measurement depends
on some form of distance metric between the input (clean)

and output (degraded) speech signals to predict the subjec-
tive MOS. In some situations an intrusive approach may not
be applicable because the input speech signal may be un-
available. Non-intrusive measurement depends only on the
degraded speech signal and is a more challenging approach
to objective speech quality estimation. Non-intrusive mod-
els have been proposed in [2, 3, 4], but only recently has
ITU-T released P.563 as its non-intrusive objective quality
measurement standard algorithm [5]. P.563 resulted from
a collaboration of Psytechnics’ NiQA algorithm [6], Swis-
sQual’s NiNA [7], and Opticom’s P3SQM.

The signal parameterization in P.563 is divided in three
independent functional blocks corresponding to the main
classes of distortion; they are: vocal tract analysis, high ad-
ditional noise, and speech interruptions, muting and time
clippings. A total of 51 characteristic signal parameters are
calculated. Based on a restricted set of 8 key parameters,
a dominant distortion class is selected. The key parame-
ters and the selected distortion class are used for adjusting
the speech quality model. Furthermore, for each distortion
class, a linear combination of parameters is used to generate
an intermediate quality rating that, together with other ad-
ditional signal features are combined to calculate the (raw)
objective quality score.

We propose a novel method for non-intrusive objective
speech quality assessment. The method is based on com-
paring features extracted from degraded speech to an arti-
ficial reference model of clean speech signals. The degree
of mismatch serves as an indicator of speech quality. The
reference model employs Gaussian mixture (GM) models
trained on features extracted from a dataset of clean speech
signals. Simulation shows that our approach offers accurate
and yet low-complexity measurement of speech quality.

2. GMM-BASED NON-INTRUSIVE SPEECH
QUALITY ESTIMATION

The proposed non-intrusive measurement algorithm is de-
signed based on the architecture depicted in Fig. 1. Non-
intrusive methods do not have access to the clean speech
signal. Our approach uses high-quality, undistorted speech
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Fig. 1. Algorithm architecture

signals to produce an artificial model of the behavior of
clean speech. Features extracted from a test speech signal
are compared to the artificial reference model and the de-
gree of mismatch serves as an indicator of speech quality.
GMs are used to model the probability distribution of clean
speech features.

Hermansky [8] suggests that5th order Perceptual Linear
Prediction (PLP) coefficients can serve as speaker indepen-
dent speech spectral parameters. PLP analysis uses three
psychoacoustic concepts to derive a representation of the
auditory spectrum. These concepts are critical band spec-
tral resolution, equal-loudness curve, and intensity loudness
power law. The auditory spectrum is approximated by an
all-pole autoregressive model, whose coefficients are trans-
formed to cepstral coefficients. PLP analysis is more con-
sistent with the behavior of the human ear than the tradi-
tional linear predictive analysis [8]. PLP analysis is compu-
tationally efficient and permits a compact representation of
speech.

Furthermore, it is shown in [9] that time segmentation
improves objective quality assessment performance. The
speech signal is processed through a voice activity detec-
tor (VAD) and then a voicing detector. The VAD identi-
fies each speech frame asactiveor inactive. The voicing
detector further labels active frames asvoicedor unvoiced.
Time segmentation separates the different classes of speech
frames as they exert different influence on the overall speech
quality estimate.

GM models have been used extensively for speech pro-
cessing and have also shown to be useful in intrusive mea-
surement algorithms [10]. GM models are introduced here
only for the sake of notation. Letu be aK-dimensional
vector. A Gaussian mixture density is a weighted sum ofM
component densities

p(u|µ,Σ,α) =
M∑

i=1

αibi(u) (1)

whereαi ≥ 0, i = 1, ...,M are the mixture weights, with∑M
i=1 αi = 1, andbi(u), i = 1, ...,M , are theK-variate

Gaussian densities with mean vectorµi and covariance ma-
trix Σi. We experiment with 8, 16 and 32 Gaussian compo-
nents, and with diagonal and full covariance matrices. The
EM (expectation-maximization) algorithm [11] is used to

train the GM densities, i.e., to estimate the weights, means
and covariances of the Gaussian components.

GM densities are used to model the PLP coefficients of
the different classes of speech frames. Using clean speech
signals, we train three different Gaussian mixture densities,
pclass(u|λ). The subscriptclassrepresents either “voiced”,
“unvoiced” or “inactive” and we useλ to denote{µ, Σ,
α} throughout the remainder of this paper. In principle, by
evaluating these densities at the degraded PLP coefficients
x (i.e., pclass(x|λ)) we measure how consistent is the de-
graded prediction coefficient vector with the clean predic-
tion coefficient model. Degraded voiced vectors are applied
to pvoiced(u|λ), unvoiced vectors topunvoiced(u|λ) and in-
active vectors topinactive(u|λ).

In practice, for a given speech signal, there is not one
degraded PLP coefficient vector, but instead a sequence of
degraded vectors. We need to evaluate

pclass({x1, x2, ..., xNclass
}|λ), (2)

whereNclass is the number of degraded PLP coefficient
vectors of a specific speech class. Assuming independence
of the vectors between frames, the likelihood probability
can be expressed as

pclass({x1, x2, ..., xNclass
}|λ) =

Nclass∏

j=1

pclass(xj |λ). (3)

We measure consistency between the observation and the
model using a normalized log-likelihood of the observed
data

cclass(x) =
1

Nclass

Nclass∑

j=1

log(pclass(xj |λ)). (4)

Largercclass indicates greater consistency. For each class,
the product of the consistency measure (4) and the fraction
of frames of that class in the speech signal is calculated.
The three products for the three classes are mapped to ob-
jective MOS using multivariate adaptive regression splines
(MARS) [12]. MARS models are designed based on the
subjective MOSs of degraded speech, as we illustrate in the
experimental results presented below.

3. EXPERIMENTAL RESULTS

We compare the proposed GMM-based algorithm to P.563
using speech databases that have been evaluated in MOS
tests. The performance of the algorithms is assessed by the
correlation between subjective MOSwi and objective MOS
yi, using Pearson’s formula

R =
∑N

i=1(wi − w̄)(yi − ȳ)√∑N
i=1(wi − w̄)2

∑N
i=1(yi − ȳ)2

(5)



wherew̄ is the average ofwi, and ȳ is the average ofyi.
We also use computer processing time as a measure of al-
gorithm complexity.

A total of thirteen databases comprised of both clean
and degraded speech signals are used in the training of our
algorithm. Clean speech is used for training the GMMs,
and degraded speech for training the MARS model. The
speech databases include seven ITU-T P-series Supplement
23 multilingual databases [13], two wireless (IS-96A and
IS-127 EVRC), a mixed wireline-wireless, and three multi-
lingual databases comprised of speech coded using the ITU-
T G.728 speech coder. The databases include speech sub-
jected to various channel errors, tandeming, acoustic noise,
and reference conditions. The combined thirteen databases
contain 5864 speech file pairs.

For testing, we use three databases comprised of speech
coded with the 3GPP2 Selectable Mode Vocoder (SMV).
Each of these databases has 3072 subjectively scored de-
graded speech files. Experiment 1 tests tandeming and nom-
inal input level conditions; experiment 2 tests channel im-
pairments, and experiment 3 noisy environment conditions.
None of the speech material in the SMV databases was ap-
plied to the design of the GMM-based algorithm.

In [5], it is suggested that offsets and non-linearities
between the scales of objective and subjective MOSs be
eliminated by applying a3rd order monotonic function to
map the (raw) objective scores onto the subjective scale.
Following the suggestion, we design3rd order polynomial
mappings, by performing regression with a monotonicity
constraint, between (raw) objective scores and subjective
MOSs.

Fig. 2 exhibits correlation performance results for P.563
and the proposed GMM-based algorithm, for with and with-
out regression mapping. Without regression mapping, the
GMM method achieves correlationR comparable to P.563
on SMV experiments 1 and 2. An increase inR of approx-
imately 45% can be seen on experiment 3. With regression
mapping, the GMM method outperforms P.563 by approx-
imately 5% and 22% on experiments 1 and 3, respectively.
The results suggest that the proposed method may be capa-
ble of predicting MOSs for speech under noisy conditions
more effectively than P.563.

Processing time is also an important figure of merit for
gauging algorithm performance. We use the ANSI-C ref-
erence implementation of P.563. The computation time for
the GMM-based method encompasses the time for PLP cal-
culation, VAD and voicing decision, separation of voiced,
unvoiced and inactive frames, calculation of likelihoods and
MARS mapping. With the exception of the VAD algorithm
(taken from the ANSI-C reference implementation of ITU-
T G.729B [14]), the rest of the GMM-based algorithm is
implemented using Matlab version 6.5 Release 13. Simula-
tions are run on a PC with a 2.8 GHz Pentium 4 processor

and 2 GB of RAM.
Processing times for the two algorithms are shown in

Table 1. Results are given for a randomly selected speech
file from each of the three SMV databases. The process-
ing times for the proposed algorithm are expressed as per-
centage reduction in processing time relative to P.563. The
proposed method is capable of reducing the processing time
to less than half of that of P.563. The reduction numbers
are very conservative. A complete C implementation of the
proposed algorithm would surely increase the percentage re-
duction.

4. CONCLUSION AND FURTHER
INVESTIGATION

A novel non-intrusive speech quality estimation algorithm
is proposed based on Gaussian mixture models. We have
modeled the behavior of clean speech using GMMs and
compared features extracted from degraded speech signals
to the artificial reference model. The degree of consistency
with the model served as an indicator of speech quality.
Simulations with PLP coefficients have shown that our ap-
proach outperforms P.563 by up to 44.74% increase inR,
for SMV coded speech under noisy conditions; the pro-
posed algorithm is comparable to P.563 under various other
conditions. Furthermore, an average 40% reduction in pro-
cessing time was obtained compared to P.563.

Currently, our approach uses only GMMs to model the
behavior of clean speech. It can be inferred that if the be-
havior of degraded speech is also modeled and consistency
measures with respect to both clean and degraded models
are computed, a more powerful and robust algorithm can be
constructed. Other avenues such as incorporating different
features are also being pursued. The accuracy and compu-
tational simplicity of the proposed method will be further
improved.
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Fig. 2. Comparison of the proposed GMM-based algorithm with P.563, for with (right) and without (left)3rd order polynomial
regression mapping.
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