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Augmentative Communication Based on Realtime
Vocal Cord Vibration Detection
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Abstract—A binary switch based on the detection of periodic
vocal cord vibrations is proposed for individuals with multiple and
severe disabilities. The system offers three major advantages over
existing speech-based access technologies, namely, insensitivity to
environment noise, increased robustness against user-generated
artifacts such as coughs, and reduced exertion during prolonged
usage periods. The proposed system makes use of a dual-axis
accelerometer placed noninvasively in proximity of the vocal cords
by means of a neckband. Periodic vocal cord vibrations are de-
tected using the normalized cross-correlation function computed
from anterior—posterior and superior—inferior accelerometry
signals. Experiments with a participant with hypotonic cerebral
palsy show the proposed system outperforming a popular com-
mercial sound-based system in terms of sensitivity, task time, and
user-perceived exertion.

Index Terms—Augmentative and alternative communication,
normalized cross-correlation, sound switch, vocal cord vibration.

1. INTRODUCTION

ORLDWIDE, approximately 1.3% of all individuals

have complex communications needs and cannot rely
on natural speech for communication [1]. Such individuals
typically possess no functional movements and have severe
dysarthria or phonatory impairments as a result of degenerative
neuromotor diseases, cerebral palsy, or brain injuries. As an
example, upwards of 85% of all individuals with cerebral
palsy have severe dysarthria [2]. Due to limitations in available
augmentative and alternative communication (AAC) technolo-
gies, the majority of these individuals possess no means of
communication [3].

Recent advances in speech processing technologies have
allowed individuals with severe motor impairments to interact
with a computer using speech recognition and nonverbal vo-
calizations. Representative technologies include the Whistling
User Interface [4], Phonetic Control [5], Vocal Joystick [6],
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Voice Pen [7], and Voice Draw [8] where users control the
mouse pointer by changing the pitch, loudness, and vowel
quality of their vocalizations, hums, or whistles. This fine
phonatory control is obtained by smoothly changing mouth
shape and tongue position, and by voluntary control of vocal
cord length [9]; such control, however, is not possible for
individuals with severe motor impairments affecting voice and
speech production.

While phonatory impairments can be associated with poor
respiratory control, laryngeal dysfunction, or oral-facial mus-
cular weakness, studies suggest that voluntary phonation can be
developed [2]. Produced vocalizations, however, are often un-
intelligible, pitch invariant, and of reduced loudness [10], thus
preclude the use of existing speech-based technologies. In such
cases, augmentative communication is often achieved by means
of a scanning virtual keyboard (e.g., WiViK [11]) and a binary
sound-based switch (e.g., Words+ [12]) which activates once
sounds are detected via a close-talking microphone.

As with other speech-based technologies, environment noise,
user-generated artifacts (e.g., coughs) [9], and user fatigue [13]
play key roles in characterizing system performance. It is cus-
tomary for sound-based switches to be equipped with a “sensi-
tivity” dial which allows the user to tradeoff noise robustness for
low-volume vocalization detection. In noisy environments, loud
vocalizations have to be produced for accurate switch activation,
hence leading to premature fatigue. In quiet environments and in
scenarios involving throat microphones (e.g., [ 14]), softer vocal-
izations can be produced. In such instances, however, user-gen-
erated artifacts such as coughs, throat clearing, and respiratory
noises, as well as the output from the user’s speech generating
devices, can cause false switch activations [9].

In this paper, we venture away from conventional micro-
phone-based speech AAC technologies and propose a novel
binary switch based on periodic vocal cord vibration detection.
Speech sounds are produced by forced air from the lungs as it
passes between the vocal cords. Voiced speech sounds (e.g.,
vowels or certain consonants) and humming, for example,
cause quasi-periodic vibrations of the vocal cords [15]. Coughs,
swallows, and throat clearing, on the other hand, cause aperi-
odic vibrations. Periodic vocal cord vibrations are detected by
means of a normalized cross-correlation function, computed for
signals measured from a dual-axis accelerometer placed on the
anterior surface of the throat. The proposed solution is insen-
sitive to environment noise, robust to user-generated artifacts,
and less strenuous to use, thus overcomes major limitations of
existing speech-based technologies and contributes positively
to AAC outcomes [16].

The remainder of this paper is organized as follows. Section II
describes the developed prototype device. Section III reports
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Fig. 1. Block diagram of the proposed system.

comparative results between the device and a commercial sound
switch. Section IV presents the conclusions.

II. SYSTEM DESCRIPTION

Fig. 1 depicts a block diagram of the proposed system. A
dual-axis accelerometer is placed on the neck—in proximity
of the vocal folds—with the assistance of a neckband. The
axes of acceleration are aligned to the anterior—posterior (AP)
and superior—inferior (SI) directions, as illustrated by the
figure. Both signals are preprocessed and then analyzed by a
periodicity detection algorithm. Thresholding is then applied to
remove user-generated vibration artifacts caused by coughs or
throat clearing. Lastly, decision fusion is performed to account
for both AP and SI signal decisions; detected vocalizations can
then be used to control a human—computer interface or an AAC
device. Individual processing blocks are described in more
detail in the subsections to follow.

A. Preprocessing

Both AP and SI signals are sampled at a rate of 1000 Hz
(with an anti-aliasing filter in place) and are high pass filtered by
a fifth-order Butterworth filter with cutoff frequency at 50 Hz.
This choice of frequencies is used in order to place emphasis on
the 50-500 Hz range of typical vocal fold vibration frequencies
[17]. High pass filtering is also employed in order to remove
low-frequency vibrations caused by swallows or (in)voluntary
head movements. Representative AP and SI signals are depicted
in Fig. 2(a) for vocalization and cough instances.

B. Periodicity Detection

In this paper, the normalized cross-correlation (NCC) func-
tion is used to detect periodicity in AP and SI accelerometry sig-
nals. More complex statistical based measures (e.g., [18]) may
be explored for enhanced performance; such investigation, how-
ever, is left for future study. Let L denote frame size duration
and L,, < L the correlation window size duration. NCC is de-
fined as
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Fig. 2. Plots of (a) AP and SI signals for vocalization and cough instances
along with detected periodic events (dashed line), and zoomed-in plots of 40 ms
frames (left) and corresponding NCC functions (right) for (b) vocalizations and
(c) coughs. For (b), the AP (solid line) and SI (dashed line) curves are super-
imposed.

where K = 0,1, ... kmax, kmax < L — Ly, is the maximum lag,
s(n) is the zero-mean framed signal segment (AP or SI), and e,
is the energy of the windowed signal and given by

k+L.,—1

ep = Z s%(n). 2)

n=k
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The NCC function can assume values between [—1,1] with
values close to unity indicating periodicity.

Motivated by conventional speech processing algorithms
(e.g., [19]), signals are analyzed using 40 ms frames (L = 40
at a sampling rate of 1000 Hz ) and a correlation window size
of 20 ms (L., = 20). Plots in Fig. 2(b) and (c) depict 40 ms
segments of AP and SI signals (left subplots) and the respective
NCC functions (right subplot) for instances of vocalizations
and coughs, respectively. As can be seen, vocal fold vibrations
caused during vocalization are quasi-periodic, resulting in a
periodic NCC function with peak values close to unity. In
turn, vibrations caused by unwanted artifacts such as coughs
are shown to be aperiodic and to attain low NCC values. It is
important to emphasize that other user-generated artifacts, such
as movement of the body, may exhibit quasi-periodic behavior;
such artifacts, however, have frequencies below 50 Hz and are
filtered out during signal preprocessing.

C. Thresholding and Decision Fusion

As observed in Fig. 2(b), periodic signal segments are charac-
terized by a periodic NCC function with cross-correlation values
that approach unity near the peaks. Our preliminary experiments
have also suggested that coughs can occasionally cause quasi-
periodic behavior in AP and SI accelerometry signals. Hence,
in order to avoid detection errors, thresholding and decision fu-
sion is applied. Let Pelass = {P(class,1)s P(class,2) } denote the
first two peaks of the computed NCC function starting from O
lag [i.e., the two leftmost maxima in the right panels of Fig. 2(b)
and (c)]; subscript class indicates either AP or SI channels. A
vocalization is detected if the following rule holds:

Vocalization =
TRUE : if {pap1 > Thresh and pap > Thresh}

{ or {psr.1 > Thresh and psy 2 > Thresh} (3)
FALSE : otherwise

where Thresh is a user defined threshold that regulates how
much “aperiodicity” is accepted by the device. Empirically, we
have found Thresh = 0.8 to be an optimal value for distin-
guishing vocalizations from other sources of vibration (see Sec-
tion III-C). However, in order to account for individual differ-
ences in vocal fold function (e.g., almost “whispered” vocaliza-
tions that may be produced when the individual is fatigued), an
adjustable threshold dial is implemented in the final hardware
solution.

D. Hardware Implementation

A realtime hardware implementation of the proposed
system was developed using a PIC microcontroller
(PIC24FJ64GA002). A 5 k€2 potentiometer is used to allow for
user control of the threshold which was preset to lie between
[0.5, 1]. The normalized cross-correlation function was
programmed into the microcontroller; vocalization detection
is performed based on (3). The proposed solution allows for
two possible outputs: either a high voltage for usage with
conventional interfaces or an F11 keystroke for use with a
virtual keyboard such as WiViK [11]. The implemented system

neckband
Accelerometer‘s N
and silicone Y

encasing ~

Processing unit
with microcontroller

Fig. 3. Implemented switch based on vocal cord vibration detection. System
was developed using a PIC microcontroller; accelerometer had a custom-built
silicone encasing that was attached to the neckband.

along with the accelerometer and custom-made neckband are
depicted in Fig. 3.

III. RESULTS

In this section, we compare the accuracy of the developed pro-
totype device to that of a commercial off-the-shelf sound switch;
results are reported in terms of detection accuracy, time to per-
form predetermined tasks, and user-perceived fatigue.

A. Participants

Two able-bodied adults (one male and one female) were used
to test the sensitivity of the proposed system to varying pitch
ranges and to adjust the threshold level. A state-of-the-art pitch
tracking algorithm [19] was used to measure average perpartic-
ipant pitch values. The male adult had an average pitch of 90 Hz
whereas the female had an average pitch of 170 Hz. Two indi-
viduals from the target population—one child and one adoles-
cent—also participated in the study and had average pitch values
of 280 Hz and 210 Hz, respectively. Both individuals were diag-
nosed with hypotonic cerebral palsy and have severe phonatory
impairments.

B. Performance Metrics

Sensitivity and specificity are used as performance metrics
and are given by

TP

o TN .
Specificity = TN 3 TP x 100% 5)
where TP and TN refer to true positives and true negatives, re-
spectively; FP and FN refer to false positives (e.g., detected
coughs) and false negatives (e.g., undetected volitional vocal-
izations). Sensitivity relates to the percentage of correctly iden-
tified vocalizations, whereas specificity relates to the percentage
of correctly rejected user-generated artifacts. The average time
taken to complete the experiment was also recorded and used



162 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 18, NO. 2, APRIL 2010

for algorithmic comparisons. Metrics relating to user fatigue are
described in Section III-D.

C. Threshold Adjustment

The protocol used to adjust the threshold level required
able-bodied adults to produce three consecutive vocalizations
of the vowel /a/ at three decreasing loudness levels (loud,
medium, soft), followed by three swallows and three coughs.
Participants in the target population were asked to vocalize as
often as possible during a 2.5-min recording session and were
also asked to cough, clear their throat, and exhibit respiratory
effort several times throughout the experiment. During this
pilot experiment, the child vocalized 31 times (with six coughs
and throat clearings) and the adolescent vocalized 51 times and
produced 19 coughs/throat clearings. For parameter adjustment,
the threshold was varied from 0.5-1.0 in increments of 0.05;
it was observed that improved performance was obtained with
Thresh = 0.8. Using this threshold, 100%, 97%, and 98%
accuracy was obtained for able-bodied participants and for
the child and adolescent participants in the target population,
respectively. Moreover, all coughs and throat clearings were
correctly rejected.

D. Comparative Analysis

To compare the performance of the proposed system with that
of Words+ [12], an experiment similar to the one described in
[14] was conducted with the adolescent participant. The exper-
iment consisted of eight sessions (four in the morning and four
in the afternoon) and the participant was asked to copy a pan-
gram sentence containing all letters of the alphabet using the
WiViK virtual scanning keyboard (scanning rate set at 1.5 s)
[11] with both systems; system usage was altered between days.
Due to the nature of the task, the “gold standard” is the known
(expected) sequence of timed activations required to write the
sentences. Sessions were conducted in a quiet room to avoid
any sound switch biases that may have resulted from excessive
false activations due to environmental noise. The Words+ sound
switch sensitivity dial was set to a maximum value to allow soft
vocalizations to be detected. The participant had extensive prior
experience with Words+ and WiViK.

Performance results are reported in Table I for both systems.
As can be seen, the proposed system attains improved sensitivity
relative to Words+, in particular during the afternoon where
fatigue is known to hamper the production of loud vocaliza-
tions with this particular participant; an improvement of approx-
imately 36% is attained. In terms of specificity, both systems
achieved similar performance with Words+ obtaining some-
what lower performance in the afternoon due to a false activa-
tion resultant from heavy breathing. In the afternoon, a signif-
icant reduction (p = 0.0038 using a t-test) in average time for
task completion was observed; the task was completed with the
proposed system twice as fast relative to Words+.

Three additional metrics are used to quantify user fatigue:
total number of rest periods taken during the eight sessions, the
average duration per rest period, and the change in perceived
exertion before and after the completion of the task. In order
to measure user-perceived exertion, a modified five-point Borg

TABLE I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SYSTEM AND THE
Words+ SOUND SWITCH FOR AN INDIVIDUAL WITH CEREBRAL PALSY.
TEMPORAL METRICS ARE REPORTED AS MEAN £ STANDARD DEVIATION

Performance Words+ Proposed
metric Morning Afternoon Morning Afternoon
Sensitivity (%) 82.4 63.5 85.9 86.4
Specificity (%) 100.0 99.8 100.0 100.0
Average task time (s) 371.6 783.3 324.7 379.6
+909 +914 +47.0 +70.8
Total rest periods 1 8 0 0
Duration/rest period (s) 16.5 189 £ 5.8 0 0
Perceived exertion 1.75 2.00 0.50 0.50

scale was used. The participant was asked to rate how much ef-
fort was required to complete the task and how tired he felt using
a five-point linear scale: [1-Nothing at all, not tired; 2—-A little,
not tired; 3—Moderate, a little tired; 4—A lot, tired; 5-Too much,
very tired]. During each session, the participant was asked to
rest between tasks such that pre-task exertion levels remained
the same for the two switches. The perceived exertion metric
reported in Table I refers to the average difference between
post- and pre-task perceived exertion levels; higher values indi-
cate higher levels of fatigue. As can be seen, the participant did
not require rest breaks to complete the task with the proposed
system and reported substantially lower exertion levels relative
to Words+.

Additional testaments to the advantages obtained with the
proposed solution include the multiple “chats” carried out with
the participant after each session. The participant asked about
the authors’ preferences of movies, rock bands, and foods. In
one instance, he told his educational assistant that a chocolate
allergy was the reason for him being sick that day. He also re-
quested a new functionality for WiViK that would enable him
to play online video games that require multiple buttons to be
pressed at once. According to his educational assistant, this is
the most she has seen him interact with his computer and with
others. The use of soft vocalizations and hums has also been re-
ported to be less disruptive to his peers at school.

IV. CONCLUSION

A novel binary switch based on periodic vocal cord vibration
detection is proposed. The system is shown to overcome three
major shortcomings of existing speech-based access technolo-
gies—robustness to environment noise, user-generated artifacts,
and user fatigue. Additionally, hums can be used for switch ac-
tivation. Hums are less strenuous on the vocal folds relative
to voiced vocalizations, hence play an important clinical factor
during prolonged switch usage. The system was tested on four
participants (two able-bodied and two clients) and showed re-
liable performance over a wide range of pitch values. With a
participant with hypotonic cerebral palsy, the proposed system
outperformed a commercial sound-based solution in terms of
sensitivity (36% improvement), average task time (53% reduc-
tion), and perceived exertion (87.5% reduction). The single case
study results reported here are encouraging and warrant further
experiments to determine the usability of the device with other
user populations. Further improvements are being investigated
to allow for quaternary switch outputs based on discriminating
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different pitch frequencies (high or low) and vocalization dura-
tions (short or long).
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