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a b s t r a c t

Automatic segmentation of dual-axis swallowing accelerometry signals can be severely affected by
strong vocalizations. In this paper, a method based on periodicity detection is proposed to detect and
remove such vocalizations. Periodic signal components are detected using conventional speech process-
ccepted 7 April 2010

eywords:
peech removal
ough removal
ysphagia

ing techniques and information from both axes are combined to improve vocalization detection accuracy.
Experiments with 408 healthy subjects performing dry, wet, and wet chin tuck swallows show that the
proposed method attains an average 95.3% sensitivity and 96.3% specificity. When applied in conjunc-
tion with an automatic segmentation algorithm, it is observed that segmentation accuracy improves by
approximately 55%. These results encourage further development of medical devices for the detection of
ual-axis swallowing accelerometry signals
ignal processing

swallowing difficulties.

. Introduction

Swallowing accelerometry, a potentially informative approach
o bedside dysphagia screening, requires minimally invasive mea-
urements that require only the superficial attachment of a sensor
nterior to the thyroid notch [1–5]. To automatically analyze swal-
owing accelerometry signals, a critical first step is the demarcation
f individual swallows within an extended recording of vibra-
ions collected from the neck. For that purpose, several algorithms
ave been proposed in recent years (e.g. [6–8]). Given the two-
imensional movement of the hyoid and larynx during swallowing
9,10], these techniques exploited both anterior–posterior (A–P)
nd superior–inferior (S–I) vibrations simultaneously in order to
chieve accurate results. The main goal of automatic segmentation
s to accurately isolate the signal segments corresponding to the
hysiological phenomena under consideration (i.e. swallowing),
hile disregarding undesired signal contributions from vocaliza-

ions and motion artifacts.
Previous contributions in the field have observed that vocal-

zations (speech or cough) can severely contaminate swallowing

ccelerometry signals (e.g. [6,11]). Such vocalizations can be classi-
ed as voluntary or involuntary. Voluntary vocalizations are usually
ssociated with speech. In clinical settings, patients are often cued
o vocalize after swallowing in order to check for potential signs
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of aspiration [12]. Involuntary vocalizations, in turn, are associ-
ated with coughing, which can occur immediately after swallowing.
Generally, coughing is a physiological response to aspiration [13].
Despite the fact that different vocalizations can be indicative of
swallowing difficulties [14], their presence can mask true swallows
and hamper automatic analysis of the signals, such as, automatic
swallow demarcation [6]. Therefore, there is a growing need for the
automatic removal of vocalizations from swallowing accelorome-
try signals. The goal of this paper is to develop such a system for
improved segmentation of swallowing signals.

The remainder of this paper is organized as follows: Section 2
outlines the experimental protocols as well as the proposed system.
Section 3 presents experimental results and conclusions are drawn
in Section 4.

2. Methodology

2.1. Experimental protocol

We recruited four hundred and eight neurologically healthy
adult (aged 18–65) participants with no history of swallowing
disorders from a local science center. The research protocol was
approved by the Toronto Rehabilitation Institute and Bloorview
Kids Rehab, both located in Toronto, Ontario, Canada. All par-

ticipants provided written consent. We collected swallowing
accelerometry signals using a dual-axis accelerometer (ADXL322,
Analog Devices) attached to the participant’s neck (anterior to
the cricoid cartilage) as shown in Fig. 1. The axes of accelera-
tion were aligned to the anatomical anterior–posterior (A–P) and

d.
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E. Sejdić et al. / Medical Engineering

s
l
fi
p
l

t
s
s
p
p
t
e
p
m
s
v
w

2

e

x

The plots in Fig. 2(a)–(f) illustrate the manifestation of speech and
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Fig. 1. Experimental setup.

uperior–inferior (S–I) directions. As in previous dual-axis swal-
owing accelerometry studies (e.g. [7,15]), data were band-pass
ltered using hardware with a pass band of 0.1–3000 Hz and sam-
led at 10 kHz using a custom LabVIEW program running on a

aptop computer.
During data collection, participants were cued to perform three

ypes of swallows. Initially, each participant performed five saliva
wallows (so called dry swallows) with a brief rest interval between
wallows to allow for saliva production. Next, the participant com-
leted five water swallows by cup with their chin in the natural
osition (so called wet swallows) and five water swallows in
he chin-tucked position (so called wet chin tuck swallows). The
ntire data collection session lasted 15 min per participant. The
articipants were instructed not to vocalize. Nonetheless, approxi-
ately one quarter of all recordings contained either voluntary (e.g.

peech) or involuntary (e.g. coughs) vocalizations. The voluntary
ocalizations occurred because some participants did not comply
ith the instructions to remain silent.

.2. Proposed approach
A typical swallowing accelerometry signal, x(n), can be
xpressed as follows:

(n) = �(n) + ε(n), (1)

ig. 2. Comparison of various vibration signals: subplot pairs (a and b), (c and d) and (
wallows in the A–P direction, respectively. The dotted vertical lines in (a), (c) and (e) rep
& Physics 32 (2010) 668–672 669

where 0 ≤ n≤ N − 1 and N represents the length of the signal, �(n)
is a signal asscociated with swallowing activities of a person, and
the observed noise, ε(n), is assumed to be additive. No assump-
tions are made about the probability distribution function of noise.
As pointed out in previous contributions (e.g. [6]), vocalizations
(speech or cough) can severely alter the amplitudes of dual-axis
swallowing accelerometry signals and hence confound any subse-
quent data processing. Therefore, when vocalizations are present,
the recorded swallowing accelerometry signal, �(n), can be repre-
sented as

�(n) = �(n) + x(n), (2)

where �(n) is a signal associated with vocalization. Due to
physiological reasons, vocalization and swallowing cannot occur
simultaneously [13]. In order to reliably detect vocalization
instances, a conventional speech processing tool, namely funda-
mental frequency estimation, or pitch tracking, is explored.

Speech sounds are produced by forced air from the lungs
as it passes between the vocal cords in the larynx at the base
of the throat. The vocal cords vibrate periodically and create
voiced sounds characterized by the fundamental frequency of the
vibration, termed the pitch frequency [16]. Typical fundamental
frequencies for the human voice range from 85 to 155 Hz for the
adult male, 165 to 255 Hz for the adult female and 208 to 410 Hz
for an infant or child younger than 10-years of age [16]. Coughing
is a defence mechanism to clear the airway of inhaled foreign bod-
ies [17]. Additionally, it enhances mucociliary clearance in cases of
impaired ciliary function and excessive mucus production [18]. It is
well known that coughing is presented by a sudden expulsion of air
which is accompanied by a typical sound. These sounds have dura-
tions which can last from 0.4 to 1 s [17,19]. Frequency analysis of
coughs have revealed periodicity with the fundamental frequency
ranges from approximately 50 Hz to as high as 600 Hz (e.g. [17,19]).
coughs in cervical vibration signals. Fig. 2(a) and (b) depict a sample
0.8 s speech vocalization in the A–P direction and a 40 ms zoomed-
in portion, respectively. Similarly, Fig. 2(c) and (d) depict a sample
0.4 s duration cough and a 40 ms zoomed-in portion, respectively.

e and f) depict sample vibrations and zoomed-in portions for speech, cough and
resent the locations of zoomed-in portions shown in (b), (d) and (f), respectively.
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s observed, the two signals exhibit high periodicity. On the other
and, swallowing signals are shown to exhibit aperiodic behaviour,
s illustrated by the plots in Fig. 2(e) and (f). It is postulated that
wallowing vibration signals are primarily due to a mechanical phe-
omenon, i.e. motion of the hyolaryngeal structure [11], and hence,
o not exhibit periodic behaviour. Furthermore, a frequency anal-
sis of accelerometry signals containing speech and coughs reveals
requency components with significant power even below 50 Hz,
hich overlap with the frequency band containing swallows [11].

Pitch tracking algorithms have been used by the speech pro-
essing community for decades and serve to detect periodicities
nd measure fundamental frequencies in real time. Here, the state-
f-the-art in pitch tracking, namely the robust algorithm for pitch
racking (RAPT) is explored [20]. Initially, the algorithm detects
ocation and duration of periodic components independently on
ach axis. This information is then combined and periodic com-
onents due to vocalizations are removed from the recording. To
ummarize, the proposed algorithm is defined via the following
teps:

. Using RAPT, the locations and durations of periodic components,
if any, are detected from each axis.

. Two indicator sequences, IA–P(n) and IS–I(n), denote the locations
and durations of possible vocalizations on each axis.

IA−P(n) =
{

1 if vocalization detected in the A–P direction
0 otherwise

(3)

IS−I(n) =
{

1 if vocalization detected in the S–I direction
0 otherwise

(4)
where 0 ≤ n ≤ N − 1, and as before, N is the length of the signal.
. A combined indicator sequence, I(n), is formed by computing the

logical conjunction between IA–P(n) and IS–I(n):

I(n) = IA−P(n)�IS−I(n) (5)

ig. 3. Sample wet chin tuck swallowing recordings in the A–P direction (a) and the S–I di
S–I(n) (d), I(n) (e).
& Physics 32 (2010) 668–672

4. Using the combined indicator sequence, the accelerometry sig-
nal at the time instant n is removed if I(n) = 1.

If vocalizations are present in the recorded signals, the length of the
processed signals will be shorter than the original; otherwise, sig-
nal length remains unchanged. The essential step in the proposed
method is the formation of the combined indicator sequence. As
will be shown in Section 3, by combining information from each
axis separately, false positives (e.g. very short-duration period-
icities during swallows or noise components) are avoided, since
vibrations associated with vocalizations are strongly reflected in
both axes. False negatives (undetected vocalizations) are seldom
observed.

2.3. Algorithm evaluation

As in [15], each recorded signal was inspected visually and audi-
torily by two independent raters. Their consensus ratings provided
the swallow and vocalization labels against which the proposed
algorithm was evaluated. In order to apply RAPT, various parame-
ters had to be set. For most of the coefficients, recommendations
made in [20] were followed. Here, we only list coefficients whose
values were customized to the present application: the duration of
the analysis frame was set to 0.035 s; the duration of the correlation
window size was set to 0.01 s; and the minimum acceptable peak
value in the normalized cross-correlation function was set to 0.2.
The reader is referred to [20] for more details regarding the RAPT
algorithm.

To test the robustness of RAPT, performance metrics sensitivity
• True positive (TP)—the number of correctly identified vocaliza-
tions;

• False positive (FP)—the number of incorrectly identified
vocalization-free segments as vocalizations;

rection (b) with vocalization present. The resulting indicator sequences: IA–P(n) (c),
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Table 1
Accuracy analysis of the proposed approach. NRV = number of recordings contain-
ing vocalizations; TNV = total number of vocalizations; NDV = number of detected
vocalizations; SENS = sensitivity; SPEC = specificity.

Swallowing type NRV TNV NDV SENS (%) SPEC (%)

Dry swallows 147 365 350 96.2 99.8

•

•

I
a
v
F
F

m
w
r
b
i
c
t
o
p
s
v

3

f

F
w
w

Wet swallows 86 147 136 92.5 97.1
Wet chin tuck 113 245 233 95.5 95.3

Overall 346 757 719 95.3 96.3

True negative (TN)—the number of correctly identified
swallows;
False negative (FN)—the number of missed vocalizations.

t is important to emphasize that for a vocalization to be counted
s a TP, the proposed algorithm must capture more than 90% of the
ocalization duration; otherwise, the vocalization is counted as a
N. Using these metrics we calculated the sensitivity (= TP/(TP +
N)) and specificity (= TN/(TN + FP)).

Next, we examined the effect of removing vocalizations on seg-
entation accuracy. Initially, recordings containing vocalization
ere segmented using the procedure described in [6]. For each

ecording, we denoted the number of swallows present, the num-
er of correctly segmented swallows (CSS) and the number of

ncorrectly identified swallows (IIS). A swallow was considered
orrectly identified only when more than 90% of the swallow dura-
ion was captured by the segmentation process. As the second step
f this analysis, the recordings were pre-processed using the pro-
osed approach and segmented as outlined in [6]. CSS and IIS were
ubsequently computed and compared to values obtained without
ocalization removal.
. Results and discussion

Table 1 reports sensitivity and specificity performance metrics
or the proposed vocalization removal technique for the three dif-

ig. 4. Sample dry swallowing recordings in the A–P direction (a) and the S–I direction (b
ith vocalization present. The recordings in the A–P direction (d) and the S–I direction (e)
ith vocalization removed.
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ferent swallow types. Over 95% sensitivity and 96% specificity were
obtained on average.

Fig. 3(a)–(e) serve to further illustrate the performance of the
proposed method. Fig. 3(a) and (b) depict a swallowing recording
with vocalization present in the A–P and S–I directions, respec-
tively. Vertical dashed lines indicated the boundaries of swallows,
while the shaded region represents the location of vocalization.
Fig. 3(c)–(e) further depict the indicator sequences IA–P(n), IS–I(n)
and I(n) computed by the algorithm, respectively. As observed, all
vocalizations are correctly detected both in the A–P and S–I direc-
tions. Due to short-duration periodicities observed in the swallows
in the S–I directions, four swallow components were erroneously
classified as vocalizations (at approximately 17, 23, 25 and 31 s).
Such errors are removed once the combined indicator sequence,
I(n), is used. We should also point out that the main reason for the
occurrence of false positives is the fact that the vibrations associ-
ated with swallowing can become partly periodic in some cases
(e.g. a person gulps while swallowing).

Table 2 summarizes the gains obtained in automatic swallow-
ing segmentation once vocalization removal is applied for the 346
recordings containing vocalizations. To remain within the scope
of the current manuscript, we did not process recordings without
vocalizations. As observed, for dry swallows, the percentage of cor-
rectly classified swallows increased from 44% (without vocalization
removal) to over 91% with the proposed method. The increase in
the accuracy for wet and wet chin tuck swallows was more moder-
ate; such a behaviour is expected since other factors can confound
segmentation (e.g. head movements are pronounced during wet
and wet chin tuck swallows). On average, a gain in CSS of approx-
imately 55% and a reduction in IIS of over 65% was obtained over
the three swallow types.
To further illustrate the gains obtained with vocalization
removal, Fig. 4 depicts swallowing signals with a vocalization in the
A–P and S–I directions (subplots (a) and (b), respectively), and the
segmentation sequence in subplot (c), obtained using the approach
in [6]. As before, the vertical dashed lines denote true locations of

) with vocalization present. The segmentation sequence (c) when applied to signals
with vocalization removed. The segmentation sequence (f) when applied to signals
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Table 2
Accuracy of the segmentation algorithm before and after the proposed method. TNS = total number of swallows; CSS = number of correctly segmented swallows;
%CSS = percentage of orrectly segmented swallows; IIS = number of incorrectly identified swallows; %IIS = percentage of incorrectly identified swallows.

Swallowing type TNS Without vocalization removal With vocalization removal

CSS %CSS IIS %IIS CSS %CSS IIS %IIS

Dry swallows 718 317 44.1 225 30.3 657 91.5 65 9.05
93
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Wet swallows 424 296 69.8
Wet chin tuck 565 355 62.8 1

Overall 1707 968 56.7 4

wallows, while the shaded vertical bars indicated the location of
ocalizations. Clearly, the segmentation sequence in (c) missed the
ajority of swallows. In contrast, the same signals after vocaliza-

ion removal are depicted in subplots (d) and (e). Note that the
ocalization activity previously highlighted by the shaded bar is
ow absent. The corresponding segmentation sequence obtained
gain using [6], is shown in subplot (f). Evidently, upon vocaliza-
ion removal, the segmentation algorithm positively identified all
ve swallows present in the recording.

It should be pointed out that due to the structure of the RAPT
lgorithm, the proposed scheme can be computationally expensive
the analysis was conducted using MATLAB on a 2.5 GHz PC with
GB of RAM). Nevertheless, we believe that through code optimiza-

ions and possible C implementation, the speed of the proposed
lgorithm can be significantly enhanced. Also, a large swallow
unctuated with an audible vocalization (e.g. a gulp) can poten-
ially introduce periodic components near the end of a swallow. In
hose situations, we risk removing parts of swallows as well.

. Conclusion

In this paper, an algorithm based on fundamental frequency
racking was proposed for the removal of vocalization distur-
ances from dual-axis swallowing accelerometry signals. The
lgorithm was designed specifically to alleviate the effects of
ocalization on the automatic segmentation process. Experimen-
al results show that, on average, vocalizations are detected and
emoved with 95.3% sensitivity and 96.3% specificity. When the
roposed method is used for preprocessing of dual-axis swal-

owing accelerometry signals, it is observed that segmentation
ccuracy increases by an average 55% and errors are reduced by over
5%.
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