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a b s t r a c t

This paper has presented a novel discriminative parameter calibration approach based on the model

distance maximizing (MDM) framework to improve the performance of our previously-proposed

method based on spectral subtraction (SS) in a likelihood-maximizing framework. In the previous work,

spectral over-subtraction factors were adjusted based on the conventional maximum-likelihood (ML)

approach that utilized only the true model and did not consider other confused models, thus likely

reached suboptimal solutions. While in the proposed MDM framework, improved speech recognition

performance is obtained by maximizing the dissimilarities among models. Experimental results based

on FARSDAT, TIMIT and real distant-talking databases have demonstrated that the MDM framework

outperformed ML in terms of recognition accuracy.

& 2010 Elsevier GmbH. All rights reserved.
1. Introduction

Despite the advances in automatic speech recognition (ASR),
system performance has shown to be higher when training and
test conditions are matched. As a consequence, existing systems
lack robustness when used in real environments outside labora-
tory settings. Mismatch between training and operating environ-
ments is still a major cause of degradation in recognition
performance. In the past two decades, a large number of
compensation techniques have been proposed to improve ASR
robustness in adverse conditions. Model compensation techni-
ques such as maximum-likelihood linear regression (MLLR) [1],
maximum a posteriori (MAP) [2] and parallel model combination
(PMC) [3] often aim at modifying the means and variances for
each state in the hidden Markov Model (HMMs) trained with
clean data so that they match noisy data observed during testing.
Feature compensation approaches, in turn, attempt to either
extract noise-invariant features or to increase the noise-robust-
ness of conventional features using techniques such as codeword-
dependent cepstral normalization (CDCN) [4], vector Taylor series
(VTS) [5], cepstral mean subtraction (CMS) [6], relative spectral
(RASTA) [7] and perceptual linear prediction (PLP) [8].

Signal compensation methods, on the other hand, aim at
alleviating the detrimental noise effects by performing speech
enhancement prior to the signal being fed to the recognizer. The
H. All rights reserved.

li), sameti@sharif.edu
goal is to improve the quality of the noisy speech signal and to
make it sound as close as possible to its clean counterpart.
Representative signal compensation strategies commonly used for
speech recognition include spectral subtraction (SS) [9], Wiener
filter [10], signal subspace decomposition [11], and model-based
speech enhancement [12]. Among these techniques, spectral
subtraction stands out as a simple yet effective method for
suppressing slowly-varying additive noise.

It must be emphasized, however, that conventional speech
enhancement techniques have been primarily designed to
improve the intelligibility or quality of the speech signal without
taking into consideration any possible detrimental effects that
processing may have on succeeding systems (e.g., an ASR engine).
In conventional methods (e.g., [11,13–16]) there is no feedback
from the recognition stage to the enhancement stage based on the
implicit assumption that an ‘‘enhanced’’ speech signal will result
in improved recognition performance. In essence, the waveform-
level criteria used during the enhancement process (e.g., max-
imizing signal to noise ratio or minimizing mean square error) do
not guarantee a decrease in speech recognition error rate. More
recently, it has been shown that by incorporating feedback
information from the speech recognition system into the
enhancement process (e.g., via parameter calibration), recognition
rates can be further improved compared to just blindly applying
the enhancement algorithm [17,18].

In previous work [19], we proposed a speech recognizer-based
approach to optimize multi-band spectral subtraction parameters
using a likelihood-maximizing framework. The method was based
on using speech recognition likelihoods as the optimization
criteria for noise suppression, as opposed to conventional methods
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based on signal level criterion. More specifically, an utterance for
which the transcription was available was used to formulate the
relation between SS filter parameters and the likelihood of the true
model. In a likelihood-maximizing framework that only utilizes
the true model without considering other confused models,
however, it is probable that only a suboptimal solution is reached.
To this end, this paper presents a discriminative approach for
speech recognizer-based spectral subtraction based on the frame-
work of model distance maximization (MDM), as described in [20].
In this framework, it has been shown that by maximizing the
dissimilarities between the true model and other competing
models, the performance of speech recognizer-based spectral
subtraction could be further improved. The proposed method
has two phases: adaptation and decoding. In the adaptation phase,
spectral subtraction parameters are calibrated based on maximiz-
ing acoustic likelihood distances between the true model and
other competing models. In the decoding phase, these optimized
parameters are applied to all incoming speech.

In Fig. 1, a block diagram of the newly-proposed framework to
speech recognizer-based SS is presented in which the multiband
SS enhances the received signals in such a manner so as to
maximize the probability that the recognition system would
estimate the correct hypothesis. This is achieved by choosing the
SS parameters (in this case, spectral over-subtraction vector
with coefficients) which generate a sequence of feature vectors
for which the likelihood distances between the true model and
other competing models (DðaÞ) is maximum. This approach
results in noticeably improved recognition performance over the
previously-proposed method based on the maximum-likelihood
(ML) based framework. Since this framework makes use of not
only the true models, but also all the competitive models to
estimate the SS parameters, its adaptation phase thus has higher
computational complexity, which is about M (number of
competing models) times of the previous framework. We apply
a strategy so that complexity is reduced to about two times of the
previously-proposed method without any noticeable performance
degradation. However, this gain must be considered in the
context of the overall complexity of the ASR process.
Multi-band Spectral Subtraction
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Fig. 1. Block diagram of the
The remainder of this paper is organized as follows. Sections 2
and 3 provide background on the spectral subtraction technique
and the maximum likelihood-based SS (MLBSS) framework,
respectively. The MDM framework for spectral subtraction is later
derived in Section 4. In Section 5, we describe the proposed model
distance maximization based SS (MDMBSS) paradigm. Experi-
ments to verify the effectiveness of the proposed method are
presented in Section 6. Lastly, Section 7 presents the conclusions.
2. Multi-band spectral subtraction

Among the available speech enhancement techniques, spectral
subtraction is one of the most established and well-known
enhancement methods in removing additive and uncorrelated
noise from noisy speech. Its popularity is largely due to its
simplicity, ease of implementation and low computational load.
This method has been extensively studied for almost 30 years and
many different variations have been proposed (e.g., [21–25]) with
the majority being variants of the method proposed by Berouti
et al. [21].

With the method described in [21] the speech utterance is
divided into speech and nonspeech regions. It first estimates the
noise spectrum from nonspeech regions and then subtracts this
estimated noise spectrum from the noisy speech to obtain an
estimate of the clean speech spectrum. More specifically:

jSnðkÞj
2 ¼

jYnðkÞj
2�ajNnðkÞj

2 if jYnðkÞj
2�ajNnðkÞj

24gjYnðkÞj
2;

gjYnðkÞj
2 Otherwise;

(

ð1Þ

where Yn(k) represents the noisy speech short-time spectrum,
Sn(k) the estimated clean speech short-time spectrum, and Nn(k)
the noise power spectrum estimate, respectively. Parameter g is
the spectral floor factor which is a small positive number.
Parameter a is the spectral over-subtraction factor and is used
to compensate for errors in noise spectrum estimation. In order to
obtain improved performance, these two parameters should be
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adaptively estimated. Berouti’s method assumed that the noise
influenced the speech spectrum uniformly over all frequencies.
Since real-world noise sources are colored and do not affect the
speech signal uniformly, frequency adaptive subtraction factor
based approaches have been proposed [25,26]. Lockwood and
Boudy [26], for example, proposed a nonlinear spectral subtrac-
tion (NSS) method where the parameter a was frequency
dependent in each frame of speech. Kamath and Loizou [25], in
turn, extended this concept and proposed a multi-band spectral
subtraction method that divided the speech spectrum into N

bands and estimated the over subtraction factor independently
for each band to take into account the variation of signal-to-noise
ratios across the speech spectrum.

Previous results have shown that the multi-band approach
achieves superior noise reduction and yields improved recogni-
tion results relative to full-band spectral subtraction [13,19].
Hence, this paper applies a Mel scale frequency spacing multi-
band spectral subtraction approach which takes into account the
fact that colored noises affect the speech spectrum differently at
various frequencies. We divide the speech spectrum into mel
frequency spacing bands and apply Berouti’s spectral subtraction
method in each band. Since the spectral over-subtraction factor is
the most important parameter driving the spectral subtraction
paradigm, we expect that adjusting this parameter in a model
distance maximization manner for each Mel frequency band,
improvement in speech recognition performance will be achieved.
3. Previous MLBSS framework

In this section, we investigate the problem of applying the
likelihood maximizing framework to select the spectral over-
subtraction vector so as to maximize the acoustic likelihood of the
true model. Hence, the relationship between the spectral over-
subtraction vector in the pre-processing stage with the acoustic
likelihood of the true hypothesis in the decoding stage is
formulated. These formulas depend on the feature extraction
method and on the acoustic unit model. In this work, mel-
frequency cepstral coefficients (MFCC) and hidden Markov model
with Gaussian mixtures in each state are used as features and for
modeling of the acoustic unit respectively. Speech recognition
systems based on the statistical model find the acoustic unit
sequence most likely to generate observed feature vectors
Z ¼ fz1; . . . z2g extracted from the enhanced speech signal. These
observed features are a function of both the incoming speech
signal and the spectral over-subtraction vector. The speech
recognizer selects the most likely hypothesis based on the optimal
Bayes classification criterion:

ŵ ¼ argmax
w

PðZðaÞjwÞPðwÞ; ð2Þ

where the observed feature vectors Z is a function of spectral over-
subtraction vector a. Our goal is to find the vector a that achieves
the best recognition performance. Similar to either speaker or
environmental adaptation methods, to adjust a, adaptation data
with known transcriptions are needed. We assume that in the
adaptation phase the true model of the utterance is known wC.
Hence, we can maximize Eq. (2) with respect to a as:

â ¼ argmax
a

PðZðaÞjwCÞ: ð3Þ

Eq. (3) shows that â is estimated based on the likelihood-
maximizing framework. The likelihood-maximizing framework
first generates an initial state sequence using the speech
recognizer. This sequence is used to optimize the vector a using
a gradient-descent algorithm ensuring optimal parameters for the
proposed state sequence. The utterance is decoded again using the
new parameters to generate a new state sequence. This joint
optimization of both the vector a and state sequence continues until
the recognition likelihood converges. The reader is referred to [19]
for more details regarding the MLBSS framework. In the following
section, the proposed MDMBSS framework is described in detail.
4. Derivation of the MDMBSS framework

As mentioned previously, in this study the model distance
maximization based criterion has been used to replace the
traditional likelihood based criterion with the aim to further
improve speech recognition accuracy. The likelihood-maximizing
framework is widely used for training and adaptation because of
its simplicity and mathematical tractability. However, such
framework only considers the likelihood for the true model.
When there are confusable models or the amount of training or
adaptation data is limited, it is very likely that only a local
optimization solution is reached and suboptimal recognition
accuracy is obtained.

In [20], it was shown that a significant reduction in recognition
error rates could be achieved with discriminative training or an
adaptation framework relative to the ML framework. Here, we
propose a novel discriminative framework based on the model
distance maximization criterion; a block diagram of the proposed
MDMBSS paradigm is shown in Fig. 1. This approach differs from
the ML approach in that ML only considers the likelihood for a
single model, while the MDM framework compares the likelihood
against other competing models and maximizes their likelihood
differences. In MDM framework â is estimated as below:

â ¼ argmax
a

PðZðaÞjwCÞ�
XM

m ¼ 1

PðZðaÞjwCm
Þ

 !
; ð4Þ

where C is the true model and Cm is the m th competing model
and M is the number of all competing models. With HMM-based
speech recognition, the acoustic likelihood is estimated by the
single most likely state sequence. If SC and SCm represent all
state sequences in the true and m th competing models,
respectively, and sC and sCm represent their respective single most
likely state sequences, then the maximum likelihood estimation
of a is given by:

â ¼ argmax
a;sC ASC ;sCm ASCm
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where zi and si represent i th feature vector and state,
respectively. In order to obtain â using Eq. (5), the acoustic
likelihood of the true transcription (model) should be jointly
maximized with respect to the state sequences of true and
competing models and a parameters. This joint optimization
should be performed in an iterative manner.

In the adaptation phase, noisy speech is passed through the
spectral subtraction filter and feature vectors ZðaÞ are extracted
for known a parameter. Then optimal state sequences for all
models are computed using the Viterbi algorithm [27]. Given the
known state sequences ŝ

C
and ŝ

Cm for true and m th competing
models, we want to find â such that:

â ¼ argmax
a

P
i

logðPðziðaÞjŝ
C
i ÞÞ�

XM
m ¼ 1

X
i

logðPðziðaÞjŝ
Cm

i ÞÞ

0
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1
A: ð6Þ
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Obtaining a closed-form solution for computing the optimal a
given a state sequence is not possible; hence, Eq. (6) can not be
directly optimized with respect to â and non-linear optimization
is used; more specifically, we use the gradient descent technique.
We define DðaÞ to be the difference between the log likelihood of
the true model and the sum of competing models. Thus

DðaÞ ¼
X

i

logðPðziðaÞjŝ
C
i ÞÞ�

XM
m ¼ 1

X
i

logðPðziðaÞjŝ
Cm

i ÞÞ: ð7Þ

The gradient vector raDðaÞ is computed as:

raDðaÞ ¼
@DðaÞ
@a0

;
@DðaÞ
@a1

; . . . ;
@DðaÞ
@aB�1

� �
; ð8Þ

where B is the number of the mel-scaled frequency bands. Clearly,
computing the gradient vector depends on both the statistical
distributions in each state and the feature extraction algorithm.
We derive raDðaÞ assuming that each state is modeled by K

mixtures of multi-dimensional Gaussians with diagonal covar-
iance matrices. Let lik and Rik be the mean vector and covariance
matrix of the k th Gaussian density function in state si,
respectively. We can then rewrite Eq. (7) given the optimal state
sequences of true and most competing models as:

DðaÞ ¼
X

i

log
XK

k ¼ 1

expðGC
ikðaÞÞ

 !
�
XM

m ¼ 1

X
i

log
XK

k ¼ 1

expðGCm

ik ðaÞÞ

 ! !
;

ð9Þ

where GikðaÞ is generally defined as:

GikðaÞ ¼�
1
2ðziðaÞ�likÞ

TR�1
ik ðziðaÞ�likÞþ logðtikkikÞ: ð10Þ

In Eq. (10), tik is the weight of the k th mixture in the i th state and
kik is a normalizing constant. Using the chain rule, we have:

raDðaÞ ¼
X

i

XK

k ¼ 1

gC
ikðaÞ

@GC
ikðaÞ

@a
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�
XM

m ¼ 1

X
i

XK
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gCm
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@GCm

ik ðaÞ

@a

 ! !
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ð11Þ

where gik is generally defined as:

gik ¼
expðGikðaÞÞPK

j ¼ 1 expðGijðaÞÞ
: ð12Þ

@GikðaÞ=@a is derived as:

@GikðaÞ
@a

¼�
@ziðaÞ
@a

R�1
ik ðziðaÞ�likÞ: ð13Þ

By substituting Eq. (13) into Eq. (11), we get:

raDðaÞ ¼ �
X

i

XK

k ¼ 1

gC
ikðaÞ
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ðRC

ikÞ
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In Eq. (14), @ziðaÞ=@a is the Jacobian matrix comprised of partial
derivatives of each element of the i th frame feature vector with
respect to each component of the over-subtraction vector a and
given by

J i ¼
@zi

@a
¼

@z0
i

@a0

@z1
i

@a0
� � �

@zF�1
i

@a0

@z0
i
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i
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� � �
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i
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i
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i

@aB�1
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i

@aB�1

2
666666666666664

3
777777777777775

: ð15Þ
The dimensionality of the Jacobian matrix is B� F, where B is the
number of elements in vector a and F is the dimension of
the feature vector. The full derivation of the Jacobian matrix when
the feature vectors are MFCC is given in [19].

Since Eq. (6) makes use of not only the true model, but also all
the competing models to estimate the vector â, the model distance
maximization procedure thus has higher computational complex-
ity than ML. The amount of computation for the proposed
framework depends primarily on the number of competing
models to be computed. Consequently, the computational expense
increases in proportion to the number of competing models
employed. In an effort to reduce the computational complexity, in
this section, we describe a technique of using a threshold to select
the highest competing model amongst all models. In the proposed
method, we propose to select only the highest competing model
by calculating the log probability shown as follows:

â ¼ argmax
a

P
i

logðPðziðaÞjŝ
C
i ÞÞ�

P
i

logðPðziðaÞjŝ
C1

i ÞÞ
� �

; ð16Þ

where C1 being the identified model that attains the highest
probability score among all competing models. In the adaptation
procedure, only the statistical accumulators of this top competitor
will be calculated and attributed to the discriminative adaptation
of the vector a. In other words, this selection strategy indicates
that only two individual models will contribute to the a estimation
as follows:

raDðaÞ ¼�
X

i

XK

k ¼ 1
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ikðaÞ
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þ
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i
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gC1

ik ðaÞ
@ziðaÞ
@a
ðRC1

ik Þ
�1
ðziðaÞ�lC1

ik Þ

� �
: ð17Þ

5. MDMBSS algorithm

Using the aforementioned framework, we propose two algo-
rithms that are applicable to optimize parameter vector a. In the
first method, called supervised MDMBSS, an enrollment utterance
with a known transcription is used to optimize the vector a. This
optimized vector a is then used to process subsequent utterances.
This algorithm is appropriate for situations in which the
environment does not vary significantly over time, such as in
front of a desktop computer in an office. For time-varying
environments, we propose an algorithm for optimizing the vector
a in an unsupervised manner. In unsupervised MDMBSS, the
optimization is performed on each utterance using a hypothesized
transcription obtained from the recognition process. Though both
of these methods are able to obtain improvements in recognition
accuracy, by using the supervised method an upper bound on the
performance of the proposed framework can be studied. We now
describe the supervised MDMBSS algorithm in more detail.

The most likely state sequence corresponding to each
utterance with a known transcription is estimated for all HMM
models using the Viterbi algorithm. The features used to estimate
the state sequence are generated using the vector a that is derived
from a previous iteration or an initial value in the first iteration.
Using the estimated state sequence and applying gradient-
descent-based optimization algorithm, the vector a is optimized
iteratively. This forms one iteration of the calibration process.
Using the optimized vector a, a second iteration can be
performed. An improved set of features for the utterance is
generated and used to re-estimate the state sequence for true
model and most competing model. The vector a optimization
process can then be repeated using the updated state sequence.
The calibration process continues in an iterative manner until the
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convergence condition is satisfied. Once convergence occurs, the
calibration process is complete. The resulting vector a is now used
to process future incoming speech.

In the next section, we show that performing speech recogni-
zer-based SS according to the model distance maximization
criterion results in noticeable improvement in speech recognition
accuracy over the previously-proposed MLBSS algorithm that
operates according to the maximum likelihood criterion.
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Fig. 2. Mean recognition accuracy of the MDMBSS algorithm on the TIMIT

database as a function of the number of competing models in SNR value of 0 dB.
6. Experiments and results

In this section, the proposed MDMBSS algorithm is evaluated
and is also compared with the previously-proposed MLBSS
algorithm under a variety of noise conditions. In order to assess
the effectiveness of the proposed algorithm, speech recognition
experiments are conducted on three speech databases: FARSDAT
[28], TIMIT [29], and a recorded database in a real office
environment. The first and second test sets are obtained by
artificially adding seven noise types (alarm, brown, multitalker,
pink, restaurant, volvo, and white noise) from the NOISEX-92
database [30] to the FARSDAT and TIMIT speech databases,
respectively.

Speech recognition experiments are conducted using Nevisa
[31], a large-vocabulary, speaker-independent, continuous HMM-
based speech recognition system developed in the speech
processing lab of the Computer Engineering Department of Sharif
University of Technology. Also, it is the first system to demon-
strate the feasibility of accurate, speaker-independent, large-
vocabulary continuous speech recognition in Persian language. In
our experiments, we use clean speech for training the recognizer
and the noisy speech at different SNRs to evaluate its perfor-
mance. A feature vector set consisting of 36 coefficients, 12 MFCC
and their first and second-order derivatives is used for all
experiments.

Experiments are done in two different operational modes of
the Nevisa system: phoneme recognition on FARSDAT and TIMIT
databases and isolated command recognition on a distant talking
database recorded in a real noisy environment. In each test, one
sentence of the test set is used in the optimization phase of the
MDMBSS algorithm. After vector a is extracted, speech recogni-
tion is performed on the remaining test set sentences using the
obtained optimized vector a. For each noise type, the optimization
phase is done separately.

In the MDMBSS algorithm, the number of competing models
(M) is one essential parameter. While a smaller value usually
decreases the recognition performance of the algorithm, a greater
stack size leads to increased computational complexity. Thus it is
very important to find the best parameter value, which suggests a
trade-off between accuracy and complexity. It has been observed
that above a specific parameter threshold, no significant gains in
recognition performance are observed; such threshold is often
regarded as the ‘‘optimal’’ parameter value. Mean recognition
accuracy of the MDMBSS algorithm on the TIMIT database as a
function of the number of competing models M is shown in Fig. 2.

From the graph in Fig. 2, we see that the performance of
MDMBSS has no noticeable improvement (about 0.3%) when the
number of competing models is larger than one. Therefore, to
obtain the optimal trade-off between calculation complexity and
recognition performance, only the top-1 competing model is
considered in the experiments described below.

6.1. Evaluation on artificially-corrupted noisy speech databases

In this section, we evaluate the recognition performance of the
proposed MDMBSS method for speech artificially corrupted by
noises at different SNRs using the FARSDAT and the TIMIT databases
and compare it with the previously-proposed MLBSS method.

FARSDAT database consists of 6080 Persian utterances, uttered
by 304 speakers. Male to female population ratio is two to one.
There are a total of 405 sentences in the database and 20
utterances per speaker. The sentences are formed by using over
1000 Persian words. The database is recorded in a low noise
environment featuring 31 dB signal to noise ratio in average. In all,
it could be stated that FARSDAT is the counterpart of TIMIT in
the Persian language. Our clean test set is selected from this
database which contains 140 sentences from 7 speakers. All of
the other sentences are used as the training set. To simulate a
noisy environment, the testing data are contaminated by seven
different NOISES at several SNRs ranging from 0 to 20 dB, at 5 dB
increments, to produce various noisy test sets. To add a noise at
a desired SNR, noise samples are multiplied by an attenuation
factor before adding them to the speech samples. This factor
depends on the speech and noise rms values calculated over the
corresponding whole file, so it is computed for each speech file.
The other database employed in our experiments is the well-
known TIMIT database which is also corrupted using the
aforementioned method.

Experiments are done in phoneme recognition mode on the
hand-segmented FARSDAT and TIMIT databases. The reason for
reporting phoneme recognition accuracy results instead of word
recognition accuracy is that in the former case the recognition
performance lies primarily on the acoustic model. For word
recognition, the performance becomes sensitive to various factors
such as the language model type.

The phoneme recognition accuracy results are listed in
Tables 1 and 2, for MLBSS and MDMBSS methods respectively,
for the noisy FARSDAT database. The corresponding results for
the TIMIT database are provided in Tables 3 and 4, respectively.
In the tables, the first column shows the SNRs of noisy speech and
the other columns show the results for different noise types.
The mean recognition accuracies are obtained by averaging
the corresponding phoneme recognition accuracies for all noise
types and are shown in the last column. In order to make the
comparison between the MDMBSS and MLBSS methods easier, we
plot the mean recognition accuracy on the FARSDAT and the
TIMIT database as a function of SNR in Fig. 3.



Table 1
MLBSS method: phoneme recognition accuracy (%) on the FARSDAT database.

SNR Noise type Mean

Alarm Brown Multitalker Pink Restaurant Volvo White

Clean 77.36 77.36 77.36 77.36 77.36 77.36 77.36 77.36

20 dB 68.32 76.18 70.45 74.20 73.45 76.82 70.86 72.90

15 dB 61.80 75.84 64.69 62.92 66.59 76.39 59.50 66.82

10 dB 55.06 75.26 56.56 49.98 56.21 72.01 48.02 59.01

5 dB 46.64 72.26 46.23 37.06 46.12 68.78 36.78 50.55

0 dB 35.01 63.8 33.79 23.24 34.14 63.61 22.84 39.49

Table 2
MDMBSS method: phoneme recognition accuracy (%) on the FARSDAT database.

SNR Noise type Mean

Alarm Brown Multitalker Pink Restaurant Volvo White

Clean 77.41 77.41 77.41 77.41 77.41 77.41 77.41 77.41

20 dB 69.36 77.25 70.96 75.33 74.32 77.06 71.91 73.74

15 dB 63.10 77.19 65.38 64.21 67.92 77.65 60.80 68.04

10 dB 56.58 76.93 57.30 51.54 57.84 73.63 49.33 60.45

5 dB 48.26 73.96 46.96 38.65 47.65 70.47 38.34 52.04

0 dB 36.78 65.89 35.05 25.02 36.03 65.56 24.43 41.25

Table 3
MLBSS method: phoneme recognition accuracy (%) on the TIMIT database.

SNR Noise type Mean

Alarm Brown Multitalker Pink Restaurant Volvo White

Clean 66.79 66.79 66.79 66.79 66.79 66.79 66.79 66.79

20 dB 54.97 65.05 54.49 43.14 50.09 63.04 36.29 52.44

15 dB 48.25 64.58 47.17 33.77 42.22 59.38 28.31 46.24

10 dB 40.38 60.56 37.44 24.84 34.43 55.53 22.38 39.37

5 dB 31.97 54.31 26.17 17.21 25.76 51.51 11.91 31.26

0 dB 21.42 43.12 15.98 11.17 16.71 46.25 5.86 22.93

Table 4
MDMBSS method: phoneme recognition accuracy (%) on the TIMIT database.

SNR Noise type Mean

Alarm Brown Multitalker Pink Restaurant Volvo White

Clean 66.83 66.83 66.83 66.83 66.83 66.83 66.83 66.83

20 dB 56.01 66.38 55.12 44.23 51.25 64.40 37.25 53.52

15 dB 49.41 66.03 47.75 35.22 43.48 60.93 29.74 47.51

10 dB 41.60 62.13 38.21 26.60 35.91 57.12 24.08 40.81

5 dB 33.18 55.96 27.05 18.91 27.42 53.38 13.64 32.79

0 dB 22.86 45.10 17.09 12.98 18.40 48.20 7.64 24.61
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Fig. 3. Mean recognition accuracy of the MDMBSS and the MLBSS methods as

a function of SNR. (a) FARSDAT database speech tested with seven added noises.

(b) TIMIT database speech tested with the same seven noises.
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We can make the following observations from Tables 1–4 and
Fig. 3: (1) In terms of its recognition performance on the noisy
speech test sets, the MDMBSS method does better than the MLBSS
method. In all cases, MLBSS method achieves lower performance
than the MDMBSS method. This is due to spectral distortions
caused by suboptimal adjustment of the spectral subtraction
factors. Moreover, (2) the higher SNR difference between the
training and testing speech causes a higher degree of mismatch,
thus resulting in greater degradation in recognition performance
and therefore the MDMBSS method is more effective. Lastly, (3)
for the clean speech test set, the recognition performance of the
MDMBSS method is nearly same that of the MLBSS method.

It can be concluded from the aforementioned experiments
that the MDMBSS algorithm has the capability to improve the
robustness of the recognition system on artificially noise-added
data. However, a direct comparison is still missing as the desired
performance is needed for real environments. Therefore, a third
set of experiments is performed and will be described below.

6.2. Evaluation on real distant-talking speech in noisy environments

In order to measure the performance of the proposed
algorithm in comparison with the MLBSS method, speech
recognition experiments are carried out on speech data recorded
in a real noisy office environment. In this experiment, we use an
isolated command recognition task trained with clean isolated
commands and test with noisy data captured from a microphone
positioned 2 m away from the speaker. We collect the training
dataset using a close-talking microphone in a quiet office using 16
female and 32 male talkers; each uttered 30 commands such as
turn on/off or open/close different devices in an office. We gather
the test data in a noisy office environment. For the test set, 22
male and 11 female talkers, different from those used to produce
the training dataset, utter commands at a 2 m distance from the
microphone. Room is 4.5 m �3.5 m wide and the ceiling height is
3.5 which resulted in a reverberation time of approximately
300 ms (T60ffi0:3 s). There are some sources of noise such as three
computers and a loudspeaker propagating office noise from the
NOISEX database at a 401 angle with the wall. The average SNR of
the test set is 15 dB. The utterances are sampled at a 16-kHz
sampling rate and stored with 16-bit resolution. One utterance of
each speaker in the test set is used in the optimization phase of
the MDMBSS algorithm separately. Speech recognition is per-
formed using the Nevisa system in isolated command recognition
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Fig. 4. Recognition accuracy (%) in isolated command recognition operational mode on data recorded in real environment versus different combinations of the proposed

MDMBSS method, MLBSS and CMS.
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mode. A 16-state left-to-right HMM model without skips over
states is trained for each of the 30 commands. The output
densities are two Gaussians with diagonal covariance matrices.

In the distant-talking environment, not only the desired
speech but also sound from interfering sources is picked up.
Additionally, the received signals are corrupted by echoes
introduced by the acoustic environment. Therefore, these channel
distortions can drastically degrade the speech recognition
performance. Cepstral Mean Subtraction (CMS) [6] is one of the
most popular methods employed to reduce the effects of channel
distortion and variability. It reduces errors caused by the channel
difference between test and training conditions caused by
different recording devices and communication channels, and it
is also very simple to implement. Thus, it has been adopted in
many current systems. Due to the presence of the natural
logarithm in the feature extraction process, linear filtering usually
results in a constant offset in the filter bank or cepstral domains
and hence can be subtracted from the signal. The conventional
CMS estimates the sample mean vector of the cepstral vectors of
an utterance and then subtracts this mean vector from every
cepstral vector of the utterance. We combine the CMS with the
proposed MDMBSS by mean normalization of the Jacobian matrix
similar to what was done for MLBSS in [19].

The results of the different experiments are shown in Fig. 4 for
MDMBSS, MLBSS, CMS, MDMBSS+CMS and MLBSS+CMS methods.
Results show that adding CMS to the enhancement techniques
compensates for the channel effect. This figure also indicates that:
(1) each approach is able to improve the robustness of the system,
(2) MDMBSS combined with CMS is more effective than all other
combinations and reduces the error rate by up to 35 percent
relative to MDMBSS alone and up to 48 percent relative to the
no-enhancement baseline, and (3) The MDMBSS and MLBSS
approaches yield better performance when combined by CMS.
7. Conclusion

We presented a speech recognizer-based approach for opti-
mizing spectral subtraction parameters in a discriminative frame-
work and used it as a speech enhancement method applied to the
front-end of speech recognition systems. A discriminative adapta-
tion strategy for the SS parameters based on the model distance
maximizing criterion was proposed and experimental results
with noisy speech demonstrated that the proposed framework
improved ASR performance by an average 2% (in low SNR) relative
to a previously-proposed method based on a maximum-likelihood
based framework. Additionally, we showed that further improve-
ment can be obtained in real environments by combining the
proposed approach with cepstral mean subtraction to compensate
for channel effects. Another line of research not in the scope of
this paper but which should be explored in the future is the use of
the missing data theory in the proposed framework to further
improve ASR performance.
Acknowledgment

This research was in part supported by a grant from Iran
Telecommunication Research Center (ITRC).

References

[1] Leggetter CJ, Woodland PC. Speaker adaptation of continuous density hmms
using multivariate linear regression. In: Proceedings of the third international
conference on spoken language processing (ICSLP), Japan, 1994, p. 451–4.

[2] Gauvain JL, Lee CH. Maximum a posteriori estimation for multivariate
gaussian mixture observations of markov chains. IEEE Transactions on Speech
and Audio Processing 1994;2:291–8.

[3] Gales MJF, Young SJ. Robust continuous speech recognition using parallel
model combination. IEEE Transactions on Speech and Audio Processing
1996;4:352–9.

[4] Acero A. Acoustical and environmental robustness in automatic speech
recognition. Norwell, Mass, USA: Kluwer Academic Publishers; 1993.

[5] Moreno PJ, Raj B, Stern RM. Data-driven environmental compensation for
speech recognition: a unified approach. Speech Communication 1998;24:
267–85.

[6] Furui S. Cepstral analysis technique for automatic speaker verification. IEEE
Transactions on Acoustics, Speech, and Signal Processing 1981;29:254–72.

[7] Hermansky H, Morgan N. Rasta processing of speech. IEEE Transactions on
Speech and Audio Processing 1994;2:578–89.

[8] Hermansky H. Perceptual linear predictive (plp) analysis of speech. Journal of
the Acoustical Society of America 1990;87:1738–52.

[9] Boll S. Suppression of acoustic noise in speech using spectral subtraction.
IEEE Transactions on Acoustics, Speech, and Signal Processing 1979;27:
113–20.



B. BabaAli et al. / Int. J. Electron. Commun. (AEÜ) 65 (2011) 99–106106
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