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Taking NIRS-BClIs Outside the Lab: Towards
Achieving Robustness Against Environment Noise

Tiago H. Falk, Member, IEEE, Mirna Guirgis, Sarah Power, and Tom T. Chau, Senior Member, IEEE

Abstract—This paper reported initial findings on the effects of
environmental noise and auditory distractions on the performance
of mental state classification based on near-infrared spectroscopy
(NIRS) signals recorded from the prefrontal cortex. Character-
ization of the performance losses due to environmental factors
could provide useful information for the future development of
NIRS-based brain-computer interfaces that can be taken beyond
controlled laboratory settings and into everyday environments.
Experiments with a hidden Markov model-based classifier showed
that while significant performance could be attained in silent
conditions, only chance levels of sensitivity and specificity were
obtained in noisy environments. In order to achieve robustness
against environment noise, two strategies were proposed and
evaluated. First, physiological responses harnessed from the auto-
nomic nervous system were used as complementary information
to NIRS signals. More specifically, four physiological signals
(electrodermal activity, skin temperature, blood volume pulse,
and respiration effort) were collected in synchrony with the NIRS
signals as the user sat at rest and/or performed music imagery
tasks. Second, an acoustic monitoring technique was proposed and
used to detect startle noise events, as both the prefrontal cortex
and ANS are known to involuntarily respond to auditory startle
stimuli. Experiments with eight participants showed that with a
startle noise compensation strategy in place, performance compa-
rable to that observed in silent conditions could be recovered with
the hybrid ANS-NIRS system.

Index Terms—Ambient noise, autonomic nervous system,
hidden Markov models, music imagery, near-infrared spec-
troscopy.

1. INTRODUCTION

T is often extremely difficult for individuals with severe
motor disabilities to communicate or interact with their en-
vironment. These individuals commonly make use of access
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technologies to translate their intentions into useful control sig-
nals. Present technologies such as eye gaze [1], head [2], and
tongue control devices [3], however, require some degree of
voluntary motor control and are unsuitable for locked-in indi-
viduals who lack any functional motor skills. Although such
individuals often have full cognitive awareness, their nonfunc-
tioning bodies fail to respond appropriately to their intentions.
To this end, brain—computer interfaces (BCI) have been investi-
gated as alternative access solutions and have shown promising
results in controlled environments [4], [5].

Near-infrared spectroscopy (NIRS) has been recently investi-
gated as a noninvasive means of assessing functional activity in
the brain via measured hemodynamic responses [6] with spa-
tial resolutions (in the order of a few centimeters) similar to
those obtained with electroencephalography (EEG)-based sys-
tems [7]. Unlike EEG, however, NIRS measurements do not re-
quire cumbersome skin preparation and electrode gels. More-
over, the thought processes required to intentionally generate
the NIRS signals are relatively simple, and more directly reflect
cognitive function [8]. NIRS determines the properties of the
brain tissue by transmitting near-infrared electromagnetic radi-
ation (650-950 nm wavelengths) through the skull and com-
paring the intensities of the returning and incident light. Cer-
tain functional mental activities are known to elicit specific spa-
tial and temporal activation patterns in particular regions of the
brain [9]. The metabolic demand of mental activity causes a
change in regional concentrations of oxygenated and deoxy-
genated hemoglobin. Since the fraction of light absorbed versus
the fraction transmitted is dependent on the concentrations of
these chromophores, NIRS can be used to assess hemodynamic
responses in regions such as the motor cortex (using motor im-
agery tasks [6]) and the prefrontal cortex (using music imagery
[10], [11], mental arithmetic [12] or preference tasks [13]). Au-
tomated detection of hemodynamic changes can be used to con-
trol a binary BCI [9].

To improve the performance of NIRS-based BCI technolo-
gies, significant efforts have been placed on the detection and
removal of physiological (e.g., respiration and cardiac) noise
and motion artifacts from the recorded spectroscopy signals [9],
[14], [15]. Little research, however, has been conducted to in-
vestigate the effects of environmental noise and auditory dis-
tractions on system performance. While the work described in
[16] suggested that environmental noise had insignificant effects
on the performance of a P300-based BCI, recent research has
suggested that significant performance degradation is observed
for NIRS-BClIs based on prefrontal cortex activation (e.g., via
music imagery) [17]. This reduction in system accuracy may be
due to factors such as 1) the performance of mental tasks being
severely affected by environmental noise [ 18]-[22] or 2) the pre-
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frontal cortex being involved in the processing of distracting au-
ditory stimuli [23], [24].

In order to develop robust technologies that can be taken be-
yond controlled experimental settings and into everyday sur-
roundings, the effects of environmental factors need to be as-
certained and automated compensation strategies need to be
implemented. In this paper, initial findings are reported that
show NIRS-based systems achieving chance-level performance
in noisy environments. In order to take the first step towards the
development of noise-robust tools and to enhance the classifi-
cation of mental activity under noisy conditions, two strategies
are investigated. The first strategy proposes the incorporation of
signals harnessed from the autonomic nervous system (ANS) as
complementary information to brain hemodynamic responses
for improved mental activity classification. This is motivated
by previous research that has suggested that physiological re-
sponses such as changes to skin electrodermal activity [25], skin
temperature [26], heart rate [27], respiration rates [28], and sali-
vary pH [29] can be elicited by mental imagery tasks similar to
those used to control NIRS-BCI systems. The reader is referred
to [30] and the references therein for a more comprehensive re-
view of volitional ANS control techniques. It is hypothesized
that user intention can be better modeled once the two modali-
ties are combined.

Notwithstanding, inclusion of ANS-harnessed signals may
not significantly improve mental state classification perfor-
mance in the presence of auditory startle stimuli. Much like
the prefrontal cortex, the ANS is known to (involuntarily)
respond to auditory startle stimuli [31], [32]. To overcome
this shortcoming, an acoustic monitoring technique termed
“environment sniffing” [33] is proposed and used to suppress
classification errors caused by auditory startle reflexes.

The remainder of this paper is organized as follows. Section II
describes the materials and methods used in the experiments.
Section III introduces the proposed ANS-NIRS paradigm which
incorporates complementary information from the ANS as well
an acoustic startle noise detection and compensation strategy.
Sections IV-VI present experimental results, discussion, and
conclusions, respectively.

II. MATERIALS AND METHODS

A. Participants

Ten able-bodied adults (three male) were initially recruited
but only eight participants (mean age of 31.5 &= 10.8 years) con-
cluded the study. Ethics approval was obtained from the affili-
ated institutes and participants provided written consent. Can-
didates with metabolic, cardiovascular, respiratory, hearing, or
drug- or alcohol-related conditions that could affect either the
measurements or their ability to follow the experimental pro-
tocol (see Section II-C) were excluded.

B. Instrumentation

1) NIRS Signals: A multichannel frequency-domain NIRS
instrument (Imagent Functional Brain Imaging System from
ISS Inc., Champaign, IL) was used for signal acquisition.
Sixteen light sources, eight at 690 nm and eight at 830 nm,
were used along with two photomultiplier tube detectors. Light
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Fig. 1. Positioning of source pairs (circles) and detectors (hexagons). Each
source pair represents one A = 690 nm and one A = 830 nm source. The
signal from each source is represented as x) ,, ¢ = 1,...,4andp = L or
R, for left and right sides, respectively. Source pairs at position 3 are located,
anatomically, at the FP1 and FP2 positions of the International 10-20 system.

from the sources delivered 110 MHz-modulated light to the
forehead via 400 pm-diameter optical fibers and returned to the
photomultiplier tube detectors by 3-mm-diameter optical fibres.
The returning light was demodulated at a cross-correlation, or
heterodyning, frequency (CCF) of 5 kHz. Light sources were
cyclically switched to avoid two sources being on simultane-
ously. For a complete data collection cycle, which consisted of
one complete sequence through all sixteen sources, each source
remained on for eight periods of the CCF (1.6 ms) separated
by a two-period break (0.4 ms) to avoid any overlap. Thus the
effective sampling rate was 31.25 Hz per full data collection
cycle. A fast Fourier transform was applied to the average of
each source-detector pair of the 16 waveforms to obtain the ac
(relative amplitude at CCF), dc (relative amplitude at 0 Hz),
and phase delay (phase delay of demodulated light compared
to a reference) components. Here, only the dc component is
used as it has been shown to contain similar information to the
ac signals, however, with a higher signal-to-noise ratio [34].

The 16 source fibers were grouped in pairs such that each pair
contained one source at each wavelength allowing a single lo-
cation to be probed by both wavelengths simultaneously. Both
right and left prefrontal cortices were probed by positioning four
source pairs around one detector on each side of the participant’s
forehead (see Fig. 1); emitters in position 3 on each side were
approximately located over the FP1 and FP2 positions of the In-
ternational 10-20 System. The four source pairs positioned on
each side were located 2.12 cm apart from their respective de-
tectors; previous research has suggested that such distances suf-
fice for hemodynamic response probing in the prefrontal cortex
[35], [36]. For the sake of notation, the raw dc temporal signals
obtained from each source are represented as azgl(t) where 7 in-
dicates the source position (i = 1,...4), p the (L)eftor (R)ight
side, A indicates the wavelength (690 or 830 nm), and ¢ indicates
discrete time.

2) ANS Signals: Four physiological signals were recorded
simultaneously using a ProComp Infiniti multimodality encoder
(Thought Technology, Montreal, QC, Canada) at a sampling
frequency of 256 Hz. Electrodermal activity was measured
from two 10-mm-diameter Ag-AgCl surface electrodes at-
tached with adhesive collars on the medial phalanges of the
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Fig.2. Overall design of the proposed ANS-NIRS mental activity classification system. Hemodynamic responses in the prefrontal cortex were measured via NIRS
in synchrony with four independent ANS-harnessed physiological signals, namely EDA, ST, blood volume pulse (subsequently converted to HR), and RE. Startle
noise detection and compensation was performed to improve system performance under noisy conditions.

index and middle fingers. Medial phalanges were chosen as
they represent a region of the skin containing a high density of
sweat glands. A constant 0.5 V was applied between the two
electrodes. Skin temperature was measured using a thermal
sensor on the distal phalange of the fifth finger. Heart rate was
computed from the interbeat intervals of the blood volume
pressure waveform obtained with a photoplethysmograph
sensor. Electrodermal, temperature, and blood volume pressure
sensors were all secured to the nondominant hand of the par-
ticipant. Lastly, respiration effort was measured by positioning
a piezoelectric belt around the thoracic area; stretching due
to expansion and contraction of the chest was converted into
voltage changes.

C. Protocol

This study involved ten sessions on two separate days. Four
sessions consisted of baseline trials, each 130 s in duration, with
participants sitting at rest performing no mental task. Partici-
pants were instructed to focus on their breathing and to clear
their minds. Half of these sessions were performed in a con-
trolled silent environment and the other half in the presence of
five startle stimuli presented in random order at 20-, 45-, 65-,
90-, and 110-s time instances. Noise stimuli were all approxi-
mately 800 ms in duration and their respective loudness inten-
sities in decibel (dB) were: dog barking (80 dB), glass breaking
(91 dB), door slamming (83 dB), person coughing (79 dB), and
sneezing (82 dB).

The remaining six sessions, each 220 s in duration, consisted
of the participants alternating between baseline (i.e., rest) and
performing music imagery tasks. Each of these sessions began
and ended with a rest interval. All intervals (rest and music im-
agery) were 20 s long. The participant was cued to start and stop
music imagery with a light tap on the arm. Twenty-second acti-
vation windows were chosen to take into account the task initi-
ation delay, which we have found in preliminary experiments to
be as long as 5 s, as well as the inherent physiological latency
of the hemodynamic responses, which can be in the order of
5-10 s [6]. For similar reasons, 20-s rest intervals were chosen.
Such choice of stimulus pattern, however, can reinforce slow

third-order blood pressure waves and its subharmonics (circa
0.05-0.1 Hz), thus a wavelet-based denoising algorithm was
used, as described in Section III-A.

Before each session, participants were instructed to select a
minimum of two songs of the same emotional valence to be
used throughout the session. Of these six sessions, two were
performed in a controlled silent environment, two in the pres-
ence of continuous background noise (e.g., “humming” of an air
conditioner), and two in the presence of the five aforementioned
startle stimuli. In the latter case, the time instances in which
the startle stimuli were presented was also randomly chosen be-
tween four possible options:

1) 31, 88, 111, 149, and 191 s;

2) 28, 82,91, 128, and 151 s;

3) 10, 31, 72, 150, and 189 s;

4) 14, 89, 111, 170, and 190 s.
For all six sessions, participants sat comfortably at a desk
and were equipped with a custom-built NIRS headband made
from polyurethane and the four physiological signal sensors
described in Section II-B2.

III. ANS-NIRS SYSTEM DESIGN

Fig. 2 illustrates the overall design of the proposed
ANS-NIRS mental activity classification system (hence-
forth termed “ANS-NIRS system”). Hemodynamic responses
in the prefrontal cortex were measured via NIRS in synchrony
with four independent ANS-harnessed physiological signals,
namely electrodermal activity (EDA), skin temperature (ST),
heart rate (HR), and respiration effort (RE). Signals were
preprocessed (see Section III-A) and those collected during
baseline trials (i.e., individual at rest, see Section II-C) were
used to train hidden Markov models representative of the
normative physiological and hemodynamic response of the
individual at rest. A normalized log-likelihood measured was
then used for classification; more specifically, for automated
detection of music imagery events (using the music imagery
test trials, see Section II-C), which in turn, could be used to
control a binary BCI. Lastly, to compensate for startle noise
effects, a microphone was used to detect startle events based
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on techniques such as “environment sniffing” [33]; once startle
noise events were detected, erroneous classifications could be
suppressed. A detailed description of each processing module
is described in the remainder of this section.

A. Signal Preprocessing and Feature Extraction

The raw physiological signals were downsampled to match
the sampling frequency of the NIRS signals and then filtered
using fifth order Butterworth lowpass filters with 0.2, 0.1, 1.2,
and 0.3 Hz cutoff frequencies for electrodermal activity, skin
temperature, heart rate, and respiration effort, respectively [37].

The raw dc NIRS temporal signals z;‘l(t) t=1,...,T,
where T is the signal length, p = L,Rand? = 1,...,4
were filtered using wavelet-based filters to alleviate the effects
of physiological noise (e.g., cardiac, 0.5-2 Hz, and respi-
ration, 0.2-0.4 Hz) as well as the Mayer wave (~0.1 Hz)
[9]. Wavelet-based filters have been shown previously to be
effective for NIRS signal denoising [9]. Wavelet filters were
based on a 12-level signal decomposition using the Daubechies
wavelet. The resulting denoised signals a:;}*,(t) correspond to
the reconstruction of the approximation wavelet coefficients
and the last five detail coefficients.

Let O denote the K-dimensional feature vector. For statis-
tical models of resting hemodynamic responses and resting
hemodynamic-ANS responses, the corresponding feature vec-
tors were, respectively

~690% ~690% —830% —830%

OANS—NIRS = [SHRsSRESEDASST|ONIRS]

where the time dependence of each feature has been omitted
for notational simplicity, s subscripted with HR, RE, EDA,
and ST indicates the preprocessed signals for heart rate, res-
piration effort, electrodermal activity, and skin temperature, re-
spectively, and “|” represents vector concatenation. Parameters
:E;,‘* denote the position-averaged (p = (L)eft or (R)ight) pre-
processed dc signals given by

—Ax
$p =

4
Yoo ()
=1

o~ =

B. Hidden Markov Models

A hidden Markov model (HMM) is a statistical model that
represents a Markovian process wherein the observable out-
puts are dependent on the unobservable (hidden) states. HMMs
have been used previously for NIRS- [6] and electroencephalog-
raphy-based [38] classification of motor imagery tasks and are
only discussed briefly here; the reader is referred to [39] for a
more detailed discussion. Here, we use HMMs to capture the
complex temporal signal interactions that arise once the user
initiates the cognitive task.

Consider a Q-state HMM where the variable ¢; indicates the
HMM state at time ¢. As such, an HMM can be completely char-
acterized by three entities A = {w, A, B}, namely

1) the initial state distribution = {mq,..., 7}, where 7; =

Pr(go = j);

2) the transition matrix (A = {a, ;}) where a; ; = Pr(¢; =
jlgi—1 = 1) describes the probabilities of transitioning
from state g; to state g;,¢ > 1, j < Q;

3) the observation probability distribution (B = {b;(0)}),
i=1,...,Q.

Commonly, M-component Gaussian mixture models (GMM)
are used to model the output observation probabilities and are
given by

M
b;(0) =Y a;iR[0, p; ;, %] 2

i=1
where O is the vector being modeled, o;; > 0,7 =1,..., M

are the mixture weights for state g;, with Zf\il aj; = 1, and
N[O, p; ;,%;;] are K-variate Gaussian densities with mean
vector ; ; and covariance matrix X; ;.

HMM model parameters X are iteratively estimated with the
expectation-maximization algorithm [39], [40] using training
data vectors; the k-means algorithm [41] is used for parameter
initialization. During training, the number of parameters that
need to be estimated depends on the number of HMM states
Q, type of HMM (e.g., fully connected, left-right), number of
Gaussian components M, data dimensionality K, and GMM co-
variance matrix type (i.e., diagonal or full). More specifically,
for fully-connected HMMs, the number of parameters, IV, that
need to be estimated during training is given by

Nfu11:Q<1+Q+¥<K2+3K+2>> 3)
Naiag =Q (1+Q + M(2K + 1)) 4)

where the subscript indicates either full- or diagonal-covariance
GMMs, respectively.

In order to avoid overfitting during training, the number of
states, number of Gaussian components per state, and GMM
covariance matrix type parameters are controlled such that the
training ratio remains above a given threshold

Nrain
frain  Phreshold 5)

type

Training ratio =

where Ni,.in indicates the number of training vectors available
for training. As a rule-of-thumb, the threshold is commonly set
to be threshold = 10 [42]. In this study, full covariance GMMs
were used to explore correlations between NIRS signals mea-
sured from neighboring channels. Hence, to guard against over-
fitting, the number of HMM states and Gaussian components
per state were limited to 2—4 and 1-4, respectively; such values
were consistent with previous HMM-based BCI studies (e.g.,
(61, [38]).

The NIRS and combined ANS-NIRS signals collected during
the baseline trials performed in silence (see Section II-C) were
used to train NIRS and ANS-NIRS HMMs, respectively, for
each participant. Due to a sensor malfunction, the EDA signal
was not collected for two participants. Different HMM configu-
rations were explored given the known variations in NIRS signal
levels and spatial distributions across individuals. These varia-
tions are due, in part, to inter-subject differences in mental alert-
ness, familiarity with the procedure, and emotional intensity of
user-selected songs [43].
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C. Automatic Mental Task Classification

In order to take NIRS-BClIs outside the lab and into everyday
clinical settings, a system should be able to accurate classify the
two mental states, namely, rest and music imagery, both in silent
and in noisy conditions. Future developments will investigate
the use of automatically detected music imagery events as con-
trol signals for a binary BCI. In order to detect music imagery
events, features are extracted over time (namely, O (¢)test,NIRS
or O(%)test, ANs—NTRS) from the imagery test trials described in
Section II-C, with a running window of length L, and scored
against the reference HMMs using a normalized likelihood mea-
sure

LL(I) = Pr(O(1)sest|A)
I+L-1

1
= Z Z ’/qu H a"lt—l,’lt b’lt (O(t)test) (6)
q t=l

where | = 0,...,T — L + 1, window lengths ranging from
L = 1-15 s are explored, and a window overlap of 0.5 s is used
(i.e., LL is computed at a 2 Hz “sample rate”). For numerical
stability, the log-likelihood version of (6) is used in the simu-
lations described in Section IV. Different window lengths are
explored to account for the user-specific latencies inherent in
both the NIRS signals, which can range from 4-8 s [6], and the
physiological signals, which can range from 1-15 s [44].

Higher (log-)likelihood values suggest hemodynamic and/or
combined hemodynamic-ANS responses akin to those observed
during the baseline trials (i.e., rest) used to train the HMMs.
Lower likelihood values, in turn, indicate responses different
from rest and suggest music imagery events. As such, a decrease
in the likelihood function is expected during imagery periods
and either an increase or a constant value is expected during the
rest periods. The plot depicted in Fig. 3(a) shows a representa-
tive log-likelihood NIRS temporal series clearly illustrating the
expected increases and decreases during rest (unshaded) and im-
agery (shaded) intervals, respectively.

In order to automatically classify music imagery events, a
simple slope-change based classifier is used where sustained
changes in slope (from positive to negative) are used to identify
imagery events. To prevent the effects of mind wandering and
motion artifacts which may produce a momentary positive-to-
negative slope change, an imagery event is detected (I(1) = 1)
if at time “I” the slope of the LL changes from positive to neg-
ative and remains negative for at least 5 s post-time “[”

sgn (LL(1—1)—LL(I—-2))>0

sgn (LL(I) — LL(l — 1)) < 0 and
(LL{+P)—LL(I+P-1))<0 (D
where P =1,...,10

0, otherwise.

Note that the proposed classification strategy, once incorporated
into a BCI, will impose an upper bound on the system infor-
mation transfer rate of 12 bits/min, which is somewhat lower
than existing EEG-based BClIs [4]. For comparison purposes,
the 20-s imagery window used in this experiment imposes a
lower bound of 3 bits/min.

D. Environmental Noise Effects on Classification Performance

Previous studies have suggested that the performance of
mental tasks can be severely affected by environmental noise
[18]-[22]. As a consequence, environmental distractions are
expected to affect the normative behaviour of NIRS-driven
signals, thus hampering the performance of NIRS-based
BCI technologies based on prefrontal cortex activation (e.g.,
via music imagery). Fig. 3(b), for example, illustrates the
detrimental effects of continuous background noise on the nor-
malized likelihood measure described by (6) for music imagery
test data collected in noisy environments (see Section II-C).
As shown in this plot, an increased number of slope changes
are observed (relative to music imagery test data collected in
silence, see Fig. 3(a) thus resulting in erroneous classifications.
Moreover, for the example in Fig. 3(b), the timing of the
mental task was also affected, as witnessed by the delay and
advancement in the onset of music imagery observed in the last
two imagery intervals, respectively.

Additionally, the prefrontal cortex has also been shown to be
involved in the processing of auditory information, particularly
of distracting (startling) auditory stimuli [23], [24]. Fig. 3(c),
for example, illustrates the detrimental effects of intermittent
startle noises (represented by dashed vertical lines in the plot)
on the log-likelihood function for test (imagery) NIRS data. As
observed, environmental effects would have detrimental con-
sequences on the performance of an NIRS-based classification
system. In order to develop robust technologies that can be taken
beyond controlled experimental settings and into a user’s typ-
ical surroundings, such effects need to be taken into account
and compensated for. In this study, we propose to incorporate
ANS-harnessed physiological signals to improve classification
performance in noisy environments.

As will be shown in Section IV, however, the gains attained
by incorporating ANS-harnessed signals are more modest under
startle noise conditions, since physiological signals are also sen-
sitive to such distracting auditory stimuli [45]. This behaviour
can be illustrated by the log-likelihood function computed for
training (baseline) ANS-NIRS data under startle noise condi-
tions, as shown in Fig. 3(d). The sustained decreases in log-like-
lihood slopes observed in the baseline training sequence fol-
lowing the “dog barking,” “glass breaking,” and “door slam-
ming” startle events would suffice to generate erroneous classi-
fications. Hence, to improve system performance, a startle noise
detection and compensation scheme is proposed to suppress
misclassifications resultant from involuntary startle-reflex re-
sponses.

E. Startle Noise Detection and Compensation

In order to compensate for detrimental acoustic startle noise
effects (assumed to be additive in nature), a simple energy
thresholding algorithm is employed similar to that used for
temporal clipping detection in voice over internet [46]. A com-
plete description of the method is beyond the scope of this paper
and the reader is referred to [46] for further details; here, only a
brief summary is presented. An airbourne microphone is placed
near the user (see Fig. 2) and the instantaneous log-energy is
computed continuously. A candidate startle event is detected
once the energy differential signal exceeds a predetermined
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Fig. 3. Representative normalized log-likelihood temporal series computed for NIRS imagery test data recorded in (a) silence, and in noisy conditions with (b)
constant background noise, and (c) intermittent startle noises. Shaded regions indicate music imagery and vertical dashed lines indicate startle event times. Subplot
(d) depicts a representative normalized likelihood function for ANS-NIRS baseline data (without music imagery) in the presence of startle noises.

threshold, here empirically set to 50 dB. Fig. 4(a)—(c) depicts
the waveform consisting of the five concatenated startle stimuli
(a) used in this study, as well as the instantaneous energy (b),
and the energy differential (c) with the empirically-set threshold
depicted by the horizontal dotted line. As observed, all startle
noises are correctly detected. It is important to emphasize
that an adaptive threshold may allow for more accurate startle
event detection as the user migrates from different physical
environments, such home and hospital; such investigation is
left for future study.

Once acoustic startle noise events are detected, erroneous
mental task classifications resultant from involuntary startle-re-
flex responses need to be suppressed. As observed from
Fig. 3(d), however, the onset of the startle reflex response can
occur approximately 1-7 s poststartle stimulus. As a conse-
quence, startle noise compensation consists of suppressing

music imagery classification events that start within 5 s (empir-
ically set) post-startle detection. On the other hand, if a startle
is detected after a sustained decrease in the log-likelihood
function has been observed for at least 2.5 s, suppression does
not occur as it is assumed that the user was already in the
process of music imagery while the startle event occurred.
More specifically, let T denote the time of a detected startle
event; hence, startle noise compensation consists of updating
music imagery classification using the following rules:

0, ifI(l)=0
~ o, ifI(l)=1,1<T,+5,
TO=971 i1y =1.1<T, - 25 ®)
1, ifI(l)=1,0>T.+5

where I denotes the final imagery-versus-rest classification.
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Fig.4. Overview of startle noise detection. Subplots correspond to (a) temporal
waveform, (b) instantaneous energy, and (c) energy differential. Startle noise
detection is based on thresholding (horizontal dotted line) of the differential
energy; here the threshold is empirically set to 50 dB.

IV. EXPERIMENTAL RESULTS

A. Performance Metrics

To objectively quantify system performance, three commonly
used performance metrics are used, namely, classifier accuracy,
sensitivity, and specificity. The last two measures are given by

Sensitivity = x 100% 9)

TP
TP + FN

Specificity = x 100% (10)

TN
TN + FP
where TP and TN denote number of true positives and true neg-
atives, respectively; FP and FN, in turn, represent the number
of false positives and false negatives. The sensitivity measure
relates to the percentage of correctly classified imagery events,
whereas specificity relates to the percentage of correctly classi-
fied rest intervals.

For the developed system, a correctly classified imagery event
(TP) occurs when a sustained 5-s slope decrease in the log-like-
lihood is observed within the first 13 s of a 20-s imagery in-
terval. This window compensates for the latency in the hemo-
dynamics-driven signals, which can extend to up to 8 s [6];
only one TP event is possible during a 20-s imagery period.
If no activation is detected within this time period, an incor-
rectly classified rest interval (FN) is observed. Moreover, im-
agery events detected during expected rest intervals are deemed
as false positives (FP) while expected rest intervals classified as
so are termed true negatives (TN) with only one possible TN
occurring per 20-s rest interval. It is important to emphasize
that given the number of possible TPs and TNs available in our
dataset, performance metrics need to surpass 63% to be consid-
ered significantly greater than chance (p < 0.05) [47].

B. Classification Accuracy in Controlled Silent Environments

Table I reports per-participant classifier sensitivity and speci-
ficity values obtained by the NIRS- and ANS-NIRS systems

under silent experimental conditions. To facilitate a user-cen-
tered BCI design [4], optimal HMM configurations (i.e., () and
M parameters) as well as log-likelihood window size [ are ob-
tained on a per-participant basis; such parameter values are also
reported in the table. The results reported for subjects 7 and
8 are based only on a subset of the ANS signals due to an
EDA sensor malfunction during data collection. As observed,
once ANS-harnessed physiological signals are incorporated into
the design, average gains of approximately 14% and 10% are
observed in sensitivity and specificity, respectively. Moreover,
lower values of [ were needed with ANS-NIRS signals, thus al-
lowed for faster automatic decoding of functional intent. Inter-
estingly, since the EDA signal was not available for subjects 7
and 8, somewhat higher [ was needed. Additionally, the average
classifier accuracy observed over the eight participants was of
74.25% for NIRS and 83% for ANS-NIRS, an approximate 12%
gain.

For practical BCI applications, customizing the HMM pa-
rameters for each user would require a calibration session with
known imagery and rest intervals. This optimization process
could be performed with minimal intervention by an outside
party, similar to the calibration session required by commer-
cially available speech recognizers. The use of only resting base-
line data for training, as opposed to both baseline and imagery
data commonly required by existing BClIs, allows the calibra-
tion session to be relatively short (order of tens of seconds) and
thus unlikely to pose a burden on the user.

C. Classification Accuracy Under Noisy Conditions

Table II reports per-participant classifier performance in
constant background and startle noise environments. As can
be seen, if NIRS signals were used alone, performances levels
near chance were attained (see Section IV-A). Once peripheral
autonomic signals were incorporated in the system design,
however, performances significantly greater than chance were
obtained. An approximate relative performance gain of over
40% in both sensitivity and specificity was observed for the
constant background noise scenario; such gains were shown to
be significant (¢-test, p < 0.03). Moreover, average sensitivity
and specificity levels were not significantly different from those
observed in silent conditions (p > 0.5, see Table I). Lastly,
average classifier accuracies of 63.2% and 81.5% were attained
for NIRS and ANS-NIRS systems, respectively.

For intermittent startle noises, the performance gains
obtained over conventional NIRS by incorporating ANS-har-
nessed signals were more modest than with continuous back-
ground noise; gains of approximately 20.3% and 15.5% were
observed in system sensitivity and specificity, respectively.
System specificity, was deemed significantly different from
that obtained in silent conditions (p = 0.04). Average classi-
fier accuracies for NIRS and ANS-NIRS were of 63.6% and
75.5%, respectively. With the proposed startle noise detection
and compensation technique in place, the specificity values of
the NIRS- and ANS-NIRS systems increased to 70.8% and
78.6%, respectively; sensitivity values remained unchanged.
The obtained specificity levels were not significantly different
(p > 0.5) from those observed in silent conditions. Such
findings suggest that the proposed classification strategy, once
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TABLE I
CLASSIFICATION ACCURACY COMPARISON BETWEEN NIRS AND ANS-NIRS SYSTEMS IN SILENT CONDITIONS. COLUMNS LABELED “SENS, “SPEC,” AND “GAIN”
INDICATE, RESPECTIVELY, CLASSIFIER SENSITIVITY, SPECIFICITY, AND RELATIVE PERFORMANCE GAINS OBTAINED OVER CONVENTIONAL NIRS BY USING
ANS-NIRS SIGNALS. OPTIMAL HMM PARAMETERS () AND M) AND LOG-LIKELIHOOD WINDOW SIZES (!) ARE ALSO REPORTED. RESULTS FOR THE LAST
TWwO SUBJECTS USE ONLY A SUBSET OF THE ANS SIGNALS

Participant NIRS ANS-NIRS

number Sens (%) Spec (%) Q@ M 1 (s) Sens (%) Gain (%) Spec (%) Gain (%) Q M [1(s)
1 80.0 92.0 4 1 7 83.3 42 100.0 8.7 2 2 1
2 100.0 58.0 2 1 3 100.0 0.0 91.7 58.0 4 2 2
3 80.0 58.0 2 2 10 71.5 -3.1 66.7 14.9 4 3 6
4 50.0 100.0 4 | 10 80.0 60.0 91.7 -8.3 4 2 4
5 80.0 83.0 2 1 10 100.0 25.0 50.0 -39.8 4 3 6
6 90.0 75.0 4 1 5 100.0 11.1 100.0 333 4 2 4
7* 80.0 75.0 4 1 3 89.3 14.2 76.2 1.6 4 3 6
8%* 80.0 58.0 4 1 5 100.0 11.1 66.7 15.0 4 2 8

Average 80.0 74.9 - - 89.3 14.2 80.4 104 - - -

TABLE II

CLASSIFICATION ACCURACY COMPARISON BETWEEN NIRS AND ANS-NIRS SYSTEMS IN NOISY (CONSTANT BACKGROUND NOISE AND
INTERMITTENT STARTLE NOISES) CONDITIONS. COLUMNS LABELED “SENS, “SPEC,” AND “GAIN” INDICATE, RESPECTIVELY, CLASSIFIER
SENSITIVITY, SPECIFICITY, AND RELATIVE PERFORMANCE GAINS OBTAINED OVER CONVENTIONAL NIRS BY USING ANS-NIRS SIGNALS.
RESULTS FOR THE LAST TWO SUBJECTS USE ONLY A SUBSET OF THE ANS SIGNALS

Constant background noise

Intermittent startle noise

Participant ~ NIRS (%) ANS-NIRS (%) NIRS (%) ANS-NIRS (%)
number Sens  Spec Sens  Gain  Spec  Gain Sens  Spec Sens  Gain Spec  Gain
1 50.0 75.0 100.0  100.0  70.0 -6.7 60.0 92.0 433 278 917 -04
2 90.0 66.7 90.0 0.0 833 25.0 60.0 50.0 80.0 333 650 300
3 60.0 66.7 90.0 500 583 -125 67.0 57.0 100.0 493 583 2.3
4 40.0 50.0 62.5 56.3 66.7 333 75.0 50.0 633 -156 583 16.7
5 80.0 50.0 100.0 250 833 66.7 67.0 67.0 80.0 194 500 -254
6 80.0 41.7 100.0 250 100.0 140.0 60.0 83.0 80.0 333 667 -19.7
7* 66.7  66.7 100.0 499 750 12.4 60.0 57.0 80.0 333 833 46.1
8 66.7  50.0 90.0 349 83.3 66.6 67.0 50.0 91.7 369 870 740
Average  66.7 583 91.6 426 775 40.6 645 63.3 773 203 700 155

incorporated into a BCI paradigm, would correctly suppress
false activations resultant from involuntary startle reflexes, thus
leading to improved performance in everyday settings.

V. DISCUSSION

A. Multimodal Mental State Classification

This study investigated the concurrent measurement of
peripheral (i.e., electrodermal activity, skin temperature, res-
piratory effort, blood volume pulse) and central (i.e., cerebral
oxygenation) nervous system responses to music imagery from
able-bodied individuals for the purpose of accurate and robust
mental activity classification. The prefrontal cortex has been
implicated in the processing of emotional behavior [48]. Music
imagery of self-selected songs, for example, has been shown
to elicit the intense emotional responses needed to activate the
prefrontal cortex [43], [49], [50]; such brain responses have
been observed by functional magnetic resonance imaging [51],
positron emission tomography [10], and NIRS [36], [52].

Similarly, decades of research have shown that signals har-
nessed from the peripheral autonomic nervous system can be
volitionally controlled via mental tasks. The biofeedback lit-
erature, for example, suggests that fingertip temperature [26],
[53] and blood pressure [27], [54] can be volitionally controlled

using mental imagery. Polygraphy studies have shown that elec-
trodermal reactions can be controlled via mental relaxation exer-
cises [55]. The mental stimulation literature, in turn, has shown
that mental imagery tasks, such as motor or music imagery, can
be used to control several ANS signals with the degree of ob-
served responses being proportional to the mental effort exerted
by the subjects [28], [30], [32], [56].

Given that both the central and peripheral nervous systems
respond to music imagery, we pursued a multimodal paradigm,
where prefrontal oxygenation and autonomic responses were
monitored simultaneously. The underlying hypothesis was that
multimodal classification would yield better mental state clas-
sification than looking at prefrontal oxygenation alone. While
the signals harnessed from the two systems have different re-
sponse times (e.g., 5-8 s for NIRS and 1-15 s for ANS sig-
nals), we have found that HMMs were effective at modeling the
complex temporal interaction between the measured autonomic
and NIRS signals during resting state. Dynamic time warping
strategies [57] were investigated but led to no significant perfor-
mance improvements. As argued in [28] and [56], mental im-
agery tasks can cause significant increases in skin conductance
levels, heart and respiration rates, as well as a decrease in skin
temperature. Recent work has also shown significant increases
in NIRS raw signal amplitudes during mental imagery tasks
[52]. The classification strategy proposed here uses a window
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of 5 s post-log-likelihood slope changes (from positive to neg-
ative). It is believed that this choice of window length allows
the majority of the signals to reach levels significantly different
from those observed during rest, and thus can be accurately
detected with HMMs without the need for more complex dy-
namic time warping strategies. The results shown in Table I for
silent conditions suggest that indeed, once both modalities are
incorporated, functional intent is better detected for most par-
ticipants.

B. ANS Signal Contributions

Studies such as those reported in [28] and [56] suggest that all
four ANS-harnessed signals undergo significant changes during
mental imagery tasks. More recently, studies have gauged the
contribution of each peripheral autonomic signal for mental task
classification [58], [59]. It was observed, both previously and in
this study, that skin conductance and skin temperature were the
most labile, thus resonating with the findings reported in [30]
and [32] and corroborating the somewhat lower results obtained
for subjects 7 and 8 (see Table I). Alternately, respiration ef-
fort was shown to be the signal that least contributed to accurate
mental state classification, a finding also reported in the poly-
graph literature (e.g., [60]).

C. Environmental Noise Effects

It is widely known that the performance of mental tasks can
be severely affected when performed in a noisy environment
[18]-[22] due to “mind wandering.” In the context of NIRS sig-
nals harnessed from the prefrontal cortex, further artifacts may
arise from the processing of distracting auditory stimuli [23],
[24]; such artifacts can be observed from the undulating base-
line log-likelihood time series depicted by Fig. 3(d).

In terms of peripheral physiological signals, research has fo-
cused mostly on the effects of prolonged exposure to contin-
uous ambient noise on human health, where indicators of stress
and cardiovascular problems have been shown (e.g., [61]). A
limited number of studies have explored the short term effects
of exposure to continuous ambient noise. The study reported
in [31], for example, suggested that continuous ambient noise
had negligible effect on physiological signals. Startle stimuli, on
the other hand, were shown to cause significant changes in car-
diovascular blood pressure and volume, breathing, pulse rate,
skin conductance, amongst other neural and corporeal activi-
ties [21], [30]-[32]. It is believed that the arousal responses due
to startle stimuli are generated to increase alertness against po-
tentially harmful events. For continuous ambient sounds, the
human body habituates and arousal responses are suppressed
as the repetitive noises signify nonthreatening conditions [31].
The results reported in Table II corroborate these findings. It was
observed that for continuous ambient noise, inclusion of ANS-
harnessed signals significantly improved classification perfor-
mance over classification with NIRS signals alone. For inter-
mittent startle noises, on the other hand, the gains were more
modest. Interestingly, however, the gains observed for subjects
7 and 8 were significantly higher than those attained with the

remaining participants. This improvement is likely due to the
lability of the EDA signal to startle stimuli which was not col-
lected for these two participants.

D. Study Limitations and Future Investigations

Ultimately, the goal is to incorporate the proposed strategies
into a BCI system aimed at improving the health and well-
being of individuals with severe and multiple disabilities. In
such cases, measuring the four physiological signals described
herein may pose a challenge as, e.g., individuals with com-
plete spinal cord injury may exhibit no electrodermal reactions
below the level of injury [30] and individuals with late stage
amyotrophic lateral sclerosis who are being artificially venti-
lated will not posses useful respiration signals. To this end, sub-
ject-specific physiological signal combinations may be needed
where only a subset of the four investigated signals could be
used, potentially leading to a decrease in performance, as ob-
served with subjects 7 and 8 (see Table II). Additionally, for
some individuals, alternative cognitive tasks may elicit stronger
physiological reactions, thus leading to improved performance.
Similarly, users may react differently, both in terms of reaction
“magnitude” and reaction times, to various startle stimuli [see
Fig. 3(d)]. As a consequence, further improvements may be ob-
tained if startle noise classification (e.g., [62]) is incorporated
into the compensation step.

VI. CONCLUSION

This paper has investigated the detrimental effects of envi-
ronment noise on NIRS-based mental state classification. The
first steps towards achieving robustness against environment
noise were taken and two strategies were developed. First,
physiological signals harnessed from the autonomic nervous
system were incorporated as complementary information to
cortical hemodynamics cues. The developed paradigm was
shown to reliably discriminate between two cognitive states
(rest and music imagery) which, in turn, could be used as BCI
control signals in both silent and ambient noise conditions.
Secondly, a startle noise detection and compensation algorithm
was proposed. When in place, the classification accuracy ob-
tained in noisy environments was comparable to that obtained
in silent conditions. Such findings encourage further research
into the design of BClIs that can be taken beyond controlled
settings and into everyday environments.
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