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Abstract – This paper introduces some 
foundations of wavelets over Galois fields. 
Standard orthogonal finite-field wavelets (FF-
Wavelets) including FF-Haar and FF-
Daubechies are derived. Non-orthogonal FF-
wavelets such as B-spline over GF(p) are also 
considered. A few examples of multiresolution 
analysis over Finite fields are presented showing 
how to perform Laplacian pyramid filtering of 
finite block lengths sequences. An application of 
FF-wavelets to design spread-spectrum sequences 
is presented. 
 
1. INTRODUCTION 
 
Continuos and Discrete Wavelet transforms have 
emerged as a powerful tool in signal analyses and 
have proven to be superior to classical Fourier 
analysis in many situations [REI 94, POLI 00]. 
There has been a proliferation of wavelet 
applications including seismic geology, quantum 
physics, medical area, image processing (e.g., 
video data compression, reconstruction of high 
resolution images), computer graphics, filter banks, 
and so on. Essentially, the Wavelet Transform is a 
signal decomposition onto a set of basis function, 
which are derived from a single prototype wavelet 
by scaling (dilatations and contractions) as well as 
translations (shifts) [GOM et al. 97]. 
Fourier analysis can also be carried out over finite 
fields. The most known of such tools is the Finite 
Field Fourier transform, introduced by Pollard 
[POL 71]. Another finite field transform was 
recently introduced [CAM et al. 98]. Those kinds 
of transforms play an important role in problems 
related with the finite field structure. It seems to be 
quite natural to think about a possible wavelet 
analysis over a finite field, which could present 
some advantages regarding the "classical" finite 
field Fourier analysis. 
The basic FF-wavelet is an N-dimensional vector 
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where each component of ψ belongs to the 
extension field GF(ps). We begin with FF-wavelets 
over GF(p). Let N be an integer and  D(N) be the 

set of the divisors of N. On finite fields scaling 
cannot be carried out by a real number, a∈ℜ, as 
usual but on divisor of the length. The following 
operations are allowed: 
1) scaling   
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∀ j∈D(N/2):={ j such that  j | N/2}. 
2) translation  
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The wavelet functions are 
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which are scaled and/or translated versions of the 
basic FF-wavelet 
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Let v=(v0,v1,...,vN-1) be a signal-vector of 
blocklength N over a Galois field GF(p), of 
characteristic p≠2 and 

kj ,
ψ  wavelets functions 

over GF(ps), s≥1. 
 
Notation. The FF-wavelet Transform of a signal v 
is defined by , 
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2. HAAR DECOMPOSITION OVER FINITE 
FIELDS 
 
In this section we present the design of generalised 
Haar orthogonal bases. Assume that p≡±1 (mod 8) 
and that N is a power of two. 
 
Definition 1. A basic FF-Haar wavelet is defined 
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Example 1: Let us consider the FF-Haar, N=8, over 
GF(p).  Possible scaling factors j ∈ D(4)={1,2,4}. 
Therefore 
j=1  )1  ,1  ,1-  ,1 ,1  ,1  ,1  ,1(
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 Translations of such sequences, e.g., 
)1  ,1  ,1  ,1  ,0  ,0  , 0  ,0(
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−−= ppψ , are allowed . 

Property 2. Given a scaled version 
0,j

ψ , the 

number of different translated versions of a 
wavelet 

kj ,
ψ  is equal to j. 

 
Energy normalisation.   Since N is a power of two 
and j belongs to D(N/2), N/j is also a power of two.  
Supposing now that p≡±1 (mod 8), then  

j
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GF(p). Therefore, normalised transforms can be 
defined by 
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We consider a subset S ⊆ D(N/2) such that 
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When N=2m, then D(N/2)={1,2, 4, 8,...2m-1} and 
 so that all values of  j ∈ 

D(N/2) are used to derive scaled versions of the 
basic wavelet. These waveforms together with the 
signal  ( 1 1 1 1  ... 1 ) generate N-orthogonal 
signals of blocklength N over GF(p), i.e., it 
generates an orthogonal Haar bases.  
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Example 2. GF(7)-Haar and normalised FF-Haar 
wavelet over GF(7). 
 
( 1  1  1  1  1  1  1  1 )  ( 1  1  1  1  1  1  1  1 ) 
( 1  1  1  1  6  6  6  6 )  ( 6  6  6  6  1  1  1  1 ) 
( 1  1  6  6  0  0  0  0 )  ( 4  4  3  3  0  0  0  0 ) 
( 0  0  0  0  1  1  6  6 ) ( 0  0  0  0  4  4  3  3 ) 
( 1  6  0  0  0  0  0  0 )       ( 5  2  0  0  0  0  0  0 ) 
( 0  0  1  6  0  0  0  0 )      ( 0  0  5  2  0  0  0  0 ) 
( 0  0  0  0  1  6  0  0 )      ( 0  0  0  0  5  2  0  0 ) 
( 0  0  0  0  0  0  1  6 )       ( 0  0  0  0  0  0  5  2 ). 
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If N is not a power of two, non-orthogonal 
wavelets can be derived, e.g., N=24 over GF(7).  In 
this case, D(12)={1, 2,  3, 4,  6,  12}.  
     # of translated versions 
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1      1 
j=1   
1  1  1  1  1  1  1  1  1  1  1  1  6  6  6  6  6  6  6  6  6  6  6  6      1 
j=4   
1  1  1  6  6  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0      4 
j=6   
1  1  6  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0      6 
j=12   
1  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0    12 
_________________________________________ 
            24 
These wavelets are no more orthogonal, for 
instance, 0)0,6(),1,2( >≠< ψψ  (mod p). The dual 

wavelets can easily be derived. 
  
3. HAAR PYRAMID DECOMPOSITION 
 
One of the most powerful tools in wavelet theory is 
the decomposition of data by the pyramid-filtering 
algorithm [COH 90, REI 94, GOM et al. 97].  
 
Example 3. The two-element filter (1, 1) for the 
FF-Haar decomposition over GF(7) is,  
 
h= [ 5  5 ]    h* = [ 5  5  ] 
g= [ 2  5 ]    g* = [ 5  2  ]         
 
4. B-SPLINE OVER FINITE FIELD 
 
A simple non-orthogonal wavelet such as n<p+1 
cardinal B-spline can be easily derived over GF(p), 
where p≡±1 (mod 8). An (n+2)-element filter is 
given by   (mod p), k=0,1,2,...,n+1. The 

normalising factor is √2 (mod p) . 2
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-1. Therefore, a 
quadratic spline ( 2-cardinal B-spline) over GF(7) 
is given by [ 3 2 2 3 ] or [ 4 5 5 4]. 
 
5. FF-DAUBECHIES WAVELETS OVER 
FINITE PRIME FIELD 
 
Perhaps the most important orthogonal wavelet is 
Daubechies wavelet [DAU 88]. We want to find 



the standard orthogonal wavelet decomposition. 
We deal with wavelets derived from a prototype 

(.)ψ : 

)2()2()(, kii jj
kj −= ψψ . 

The multiresolution analysis is generated by a 
scaling function φ  such th t: 
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Example 5. An N=4 FF-Daubechies over GF(97). 
The following filters perform the multiresolution 

  = [ 57,  85,  4
The filter are such that hg −−≡ 3)1(   (mod 97).   

Furthermore, ≡∑

analysis: 
Smoothing (low-pass)   h  = [ 92,  47,  12,  57] 
Detail        (high-pass)   g 7,  5  ]. 

k k
k

14
3

0=
kh  (mod 97), 

≡∑
k

0

0
3

=
kg   (mod 97) and (mod 97).           

 

N OF SPREAD-
PECTRUM SEQUENCES 

 schemes 
ased on finite-field wavelet transforms. 

F-wavelets can also be adopted over 
ther fields. 
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The operator Σ denotes the conventional vectorial 
addition but with components taken modulo p. The 
duration of an information symbol at the input is N 
times greater than one GF(p)-symbol of the spread 
sequences. Thus, if data from the channel #3 is 2, 
2∈ 7), and the spread-sequence of this channel 
is 

GF(

0,2
ψ =( 4 4 3 3 0 0 ), then the spread

 
6. APPLICATION: DESIG
S
 
Digital multiplex usually refers to Time Division 
Multiplex (TDM). However, it can also be 
achieved by  Coding Division Multiplex (CDM), 
which has recently been the focus of interest, 
especially after the IS-95 standardisation [QUAL 
92]. The CDMA is now becoming a popular 

multiple access schemes. In this section we 
introduce a new class of CDM/CDMA
b
 
The wavelet digital carriers have the same duration 
T of an input modulation symbol, so that it carries 
N chips per data symbol. The interval of each 
wavelet-symbol is T/N and therefore the bandwidth 
expansion factor when multiplexing N channels 
may be roughly N, the same result as  FDM and 
TDM/PAM.  A naive and illustrative example is 
presented in the sequel by considering the design 
of (orthogonal) spread-spectrum sequences of 
length N=8, based on FF-Haar wavelets over 
GF(7). Other F
o
 
Exampl . A FF-Haar Spread-Spectrum over 

et. 
 scheme of such a system is shown in figure 2. 

 

GF(7). 
Orthogonal wavelets (e.g. example 3) can be 
adopted as spread-spectrum sequences. Each user 
has a spread-spectrum, which corresponds to a 
scaled/translated version of the same basic wavel
A
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Figure 1. A Multiplex Based on FF-Haar Wavelets.  

 0 0 -signal 

is ( 2 2 2 2 2 2 2 2 ) ⊗  (4 4 3 3 0 0 0 0 ) ≡  
(1 1 6 6 0 0 0 0 )  (mod 7). F r the sake of 
simplicity, this is denoted by 2(8) ⊗  4(2) 3(2) 0(4) 
+ 1(2) 6(2) 0(4)  (mod 7). Suppose for instance that, 

o

at some time, data from channels 1 to 8 are  



( 3 0 2 1 6 5 5 4 )T and the corresponding 
spreading-sequence (user's signature code) are 
 )       (

3,42,41,40,41,20,20,10,0
ψψψψψψψψ .  

The CDMed sequence will be: 

)1()1()6()2()1()1()4()4()1()1()2()6()1()1(

)2()2()4()4()2()2()8()8(

16003400340052
34006103
⊕⊕⊕⊕

⊕⊕⊕≡CDMed

, 
that is, CDMed≡ ( 6 2 6 5 4 3 5 0 )  (mod 7):=r. 
Clearly, the signal is neither TDMed nor FDMed. 
The multiplex and multiple access systems derived 
from the application of FF-wavelets can be viewed 
as a Galois-Field Multiple Access (GDMA) 
technique, recently introduced by the authors [deO 
et al. 99].  
Since FF-Haar wavelets are orthogonal, data from 
each user can be easily retrieved by an inner 
product over GF(p): 
channel #3   < r, > ≡ 2  (mod 7),  channel #8   

< r, > ≡ 4  (mod 7), etc. 

0,2
ψ

3,4
ψ

The GDM system must guarantee a perfect 
synchronisation between casoidal carriers used at 
the mux and demux [deO-CAM 00, deO et al. 01]. 
Orthogonal-FFWT can be used as spread-spectrum 
sequences so as to implement new Galois-
Division-  synchronism control since all the user's 
sequences are derived from the same basic wavelet. 
Therefore, all the spread-sequences are generated 
from the same "clock", by scaling and shifts. 
Another attractive idea is to apply multiresolution 
to implement demultiplex. Although the 
implementation showed in the above example 
elucidates the multiplex mechanism, other wavelet 
issues such as multiresolution analysis can be used 
for (de)multiplexing.  
 
7. CONCLUSIONS 
 
The aims of this paper are to present new Finite 
Field techniques and show their potential 
applications. Finite Field Wavelets can be used as a 
powerful tool in the design of multilevel spread-
spectrum sequences. Users have different 
categories of spread depending on the scaling 
factor. New digital multiplex schemes based on 
such sequences have also been introduced, which 
are multilevel Code Division Multiplex. This 
approach exploits orthogonality properties of 
synchronous non-binary sequences defined over a 
finite field.  
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