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ABSTRACT
We propose a sequential feature selection algorithm for de-
signing Gaussian mixture model (GMM) based estimators.
Feature selection is performed progressively to minimize es-
timation errors. The algorithm is applied to design estima-
tors of subjective speech quality. Simulation shows that es-
timators designed using the proposed algorithm outperform
two benchmark algorithms by as much as 39% in correlation
and 24% in root-mean-squared error. Furthermore, features
selected by the proposed algorithm are suitable for diago-
nal GMM estimators, which incur lower computational com-
plexity.

1. INTRODUCTION

In regression, given the values of n predictor variables, the
value of a target variable is estimated by means of a mapping
from the predictor variables to the target variable. Regres-
sion analysis provides a means to find a best mapping in the
form of a regression function. This paper focuses on the case
where the joint distribution of the predictor and target vari-
ables is modelled by a Gaussian mixture model (GMM). A
large class of probability densities can be approximated us-
ing Gaussian mixtures. Moreover, GMMs provide a closed
form expression for the regression function.

Estimation (or regression) using GMMs is introduced in
[1] and the idea is used in [2] to adjust the magnitude spec-
trum of a speech signal when the fundamental frequency of
the signal is altered. In [3] GMMs are used to estimate miss-
ing line spectral frequencies and in [4], subjective speech
quality ratings.

The choice of the predictor or feature variables is often
crucial in regression analysis, as redundant or noisy features
degrade estimation performance. The problem at hand is to
pick m feature variables out of n > m variables for the re-
gression function. The best m is often not known a priori,
and an exhaustive search for an optimal feature subset en-
tails examining 2n − 1 possible subsets, a clearly impossi-
ble task for large n. One approach is to use common fea-
ture selection algorithms such as classification and regression
trees (CART) [5] and multivariate adaptive regression splines
(MARS) [6].

When designing GMM-based estimators, the features se-
lected by the above algorithms may not lead to high estima-
tion accuracy. In [7], the concept of feature saliencies in the
context of GMMs is proposed. By adopting a penalty cri-
terion, saliencies of irrelevant features go to zero, thus per-
forming feature selection. This feature selection procedure,
however, does not take the GMM regression function into
consideration and may still lead to features that are ineffi-
cient for the estimation task at hand.

Here, we propose a feature mining algorithm targeted to
estimation tasks that make use of GMM regression functions.
An experiment consisting of predicting the subjective quality
rating of speech is performed and simulation results show
that GMM estimators designed using our proposed algorithm
outperform estimators trained on features selected by CART
or MARS.

2. GAUSSIAN MIXTURE MODELS

2.1 Background
Let u be an K-dimensional vector, a Gaussian mixture den-
sity is a weighted sum of M component densities

p(u|µ,Σ,α) =
M

∑
i=1

αi.bi(u) (1)

where αi ≥ 0, i = 1, ...,M are the mixture weights, with
∑M

i=1 αi = 1, and bi(u), i = 1, ...,M are the K-variate
Gaussian densities with mean vector µi and covariance ma-
trix Σi.

GMMs can assume several different forms, depending on
the type of covariance matrices. The two most widely used
are full and diagonal covariance matrices. The number of
GMM parameters that have to be estimated from sample or
training data is given by M

2 (K2 + 3K + 2) for full matrices
and M(2K +1) for diagonal matrices.

The parameters of the GMM are commonly estimated via
the EM algorithm [8]. The algorithm iterations produce a
sequence of models with monotonically nondecreasing (log)
likelihood values. Though the EM algorithm converges to a
maximum likelihood it has a few drawbacks: it is a greedy
algorithm and may converge to a local maximum and not the
global maximum. GMMs produced by the EM algorithm are,
consequently, sensitive to initialization. We use the k-means
algorithm to initialize the GMM parameters.

2.2 MMSE Estimation Using GMMs
The goal in GMM-based MMSE estimation is to find a map-
ping or regression function, f̂ (x), that minimizes the mean
squared error, εMSE , between predictor variables (x) and the
target variable (y), where

εMSE = E[(y− f̂ (x))2]. (2)

It is known that the mean squared error (2) is minimized
when f̂ (x) = E[y|x], the conditional expectation of the tar-
get variable, given the predictor vector.

GMM-based estimators rely on modelling the joint den-
sity of the K-dimensional predictor variables with the target



variable using (1) with u = [y,x]T . The covariance matrix of
the ith GMM component becomes

Σi =
(

Σyy
i Σyx

i
Σxy

i Σxx
i

)
.

Given the GMM parameters, the MMSE regression func-
tion is given by [1]

f̂ (x) = E[y|x] =
M

∑
i=1

hi(x)[µy
i +Σyx

i (Σxx
i )−1(x−µx

j )]. (3)

The above GMM estimator or GMM regressor function is
a weighted sum of linear models, where the weight hi(x) is
the probability that the ith Gaussian component generated the
vector x and given by

hi(x) =

αi

|Σxx
i |1/2 e

(
− 1

2 (x−µx
i )T (Σxx

i )−1(x−µx
i )

)

M

∑
k=1

αk

|Σxx
k |1/2 e

(
− 1

2 (x−µx
k )T (Σxx

k )−1(x−µx
k )

) . (4)

If the covariance matrices are restricted to be diagonal, (3)
simplifies to

f̂ (x) =
M

∑
i=1

hi(x)µy
i . (5)

3. FEATURE SELECTION

The primary objective in the feature selection problem is
to find, amongst n candidate feature variables, a subset of
variables {x1, . . . ,xm},m ≤ n, and a mapping f̂ (x1, . . . ,xm),
such that f̂ yields a good estimate of the response variable y.
Presently, CART [5] and MARS [6] have been used as fea-
ture selection algorithms and/or regressors in many diverse
problems, including speech quality prediction [9]. They are
used here to benchmark our proposed feature selection algo-
rithm, which is described below.

3.1 Proposed Method
It is argued in [1] that the GMM estimator has interesting re-
lations to models such as CART and MARS in the sense that
the mixture of Gaussians competitively partitions the feature
space and learns a linear regression surface on each partition.
Thus, it seems evident that one should use the GMM estima-
tor to sift out the most relevant variables. Here we propose a
sequential feature selection algorithm that progressively con-
structs f̂ using (3) or (5).

The proposed algorithm starts with an empty feature set
and features from a candidate feature set are added to the
set progressively. To determine which candidate feature to
add, the algorithm tentatively adds to the current feature set
one feature that is not already selected to form an augmented
feature set. The joint density of the target variable and the
augmented feature set is modelled with a GMM, with model
parameters λ = (α , µ , Σ) estimated using the EM algorithm.
The accuracy of the GMM estimator using λ is then calcu-
lated. The above is repeated for every candidate feature and
corresponding GMM. The candidate feature that produces
the least regression error is admitted into the current feature

set to form an updated feature set. The algorithm stops when
the desired number of features has been selected.

It is worth mentioning that for each candidate feature
the best number of Gaussian components, M, in (1) can be
determined by checking different values of M. With a cor-
responding increase in computational complexity, multiple
features can also be tested and selected per iteration. Using
the notation “EM” to stand for GMM parameter estimation
via the EM algorithm, f̂k for the regression function with
k variables, and D for the desired number of features, the
algorithm can be summarized as follows:

Initialization: Let I = {1, . . . ,n}, S = /0, k = 1;

Step 1: λi ← EM(y, S∪{xi}), ∀i ∈ I;

Step 2: ik = argmin
i∈I

∑ j(y j− f̂k(S∪{xi}|λi))2;

Step 3: I ← I−{ik}, S← S∪{xik}, k ← k +1.

Go to step 1 if k < D, else stop.

Also note that for full covariance matrices the number
of parameters that need to be estimated scales quadratically
with the feature space dimension. When dealing with limited
data, as in our case, severe problems arise due to singulari-
ties and local maxima in the log-likelihood function. Here
we avert ill-conditioning by adding a small diagonal matrix,
namely εIn×n, to each covariance matrix in each M-step iter-
ation of the EM algorithm. Typically, the optimal value for
ε is not known a priori. A simple procedure used here is to
vary ε over a range of values and choose the value that leads
to the best performance on the validation data set. We varied
ε from 10−2 to 10−9 and the value that led to best perfor-
mance was ε = 10−9.

We dedicate the next section to testing the proposed fea-
ture selection algorithm on a GMM-based speech quality es-
timation task. We compare with GMM estimators trained on
features selected by CART or MARS. We present results for
both diagonal and full covariance GMMs.

4. EXPERIMENT SETUP

The GMM for speech quality estimation is built on percep-
tual feature variables obtained by classifying perceptual dis-
tortions under a variety of contexts to form a pool of 206 can-
didate features. In [4], the top-5 most important feature vari-
ables as ranked by CART and MARS are used for training
GMM estimators. The target variable is the subjective quality
rating represented by the Mean Opinion Score (MOS) [10],
which falls between 1 and 5.

We compare GMM estimators trained on features se-
lected by our proposed feature selection algorithm to estima-
tors trained on features selected by CART or MARS. Thir-
teen MOS labelled speech databases are used, containing a
total of 5864 speech files. We use 10-fold cross validation to
provide some robustness in the performance evaluation. Es-
timation performance is assessed by the correlation (R) be-
tween subjective MOS wi and estimated MOS yi, using Pear-
son’s formula

R = ∑N
i=1(wi− w̄)(yi− ȳ)√

∑N
i=1(wi− w̄)2 ∑N

i=1(yi− ȳ)2
,



where w̄ is the average of wi, and ȳ is the average of
yi. MOS measurement accuracy is assessed using the root-
mean-square MOS error (RMSE)

RMSE =

√
∑N

i=1(wi− yi)2

N
.

For this experiment we check all permissible values of M at
each iteration. To allow comparisons with [4] we choose the
top-5 features and restrict M ≤ 5 in order to maintain an ade-
quate training ratio (ratio between the number of parameters
that have to be estimated during the training phase and the
total number of files in the training set) of 37 for full covari-
ance matrices and 81 for diagonal matrices.

Let Mi be the number of Gaussian components chosen in
iteration i of the proposed algorithm, it was found that the
following combinations were often selected throughout the
ten cross validation trials:
• Diagonal: M1 = 4, M2 = M3 = M4 = M5 = 5;
• Full: M1 = 2, M2 = 3, M3 = M4 = 4, M5 = 5.

Note that for the five algorithm iterations (D=5) used in this
experiment the number of Gaussian components either in-
creases or stays the same as the algorithm progresses. As
expected, full covariance GMMs use fewer Gaussian com-
ponents at the beginning, and the number of components in-
creases with the number of features.

Tables 1 and 2 compare performance figures for a five-
component GMM estimator designed using the proposed al-
gorithm to that of an estimator designed using CART or
MARS, for diagonal and full covariance matrices, respec-
tively. The column “%↑” indicates percentage improvement
in R found by using features selected with our proposed
method. The percentage improvement is given by

% ↑ R =
Rnew−Rold

1−Rold
×100%

where Rnew and Rold are the correlation obtained using the
proposed method and using CART or MARS, respectively.
The improvement indicates percentage reduction of the gap
to perfect correlation. In turn, column “%↓” indicates per-
centage reduction in RMSE.

As can be seen, our proposed algorithm outperforms both
benchmark algorithms. For diagonal GMM estimators we
see an average improvement in R of 26.95% and 38.94 %,
and an average decrease in RMSE of 13.93% and 24.16%
when compared to CART and MARS, respectively. An aver-
age improvement in R of 31.10% and 20.01%, and an average
decrease in RMSE of 19.07% and 11.96% is achieved for full
GMM estimators. Also note that an average improvement
over PESQ [11], the current “state-of-art” speech quality pre-
diction algorithm, of 26.11% in R and 18.04% in RMSE is
attained with our full GMM estimators.

One of the drawbacks of using CART and MARS for
speech quality estimation was highlighted in [4] and con-
sisted in the fact that features selected by the data mining
algorithms had significant correlation amongst them. Diag-
onal covariance GMM estimators, consequently, presented
only modest performance figures and this was attributed to
the fact that the use of a small number of diagonal Gaussian
components (M = 5) was insufficient to model or compensate
for the correlation between features. By looking at Tables 1
and 2 we see that CART selected features outperform MARS
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Figure 1: Subjective MOS versus Estimated MOS for (a)
CART and (b) diagonal GMM selected features.

selected features with diagonal GMM estimators. This does
not hold true when using full GMM estimators, suggesting
that MARS selected features are more correlated.

Furthermore, in [4] a prominent vertical alignment of
points in the subjective MOS versus estimated MOS scat-
tered plots (vide Fig.1(a)) suggested that full covariance
GMM estimators were needed in order to predict the residual
variation in subjective MOS. If one insists on using diagonal
GMM, the problem is mitigated by using the proposed fea-
ture selection algorithm, as shown in Fig.1(b). Note that the
vertical alignment of points is considerably less accentuated
than CART, reflecting the performance improvements shown
in Table 1. For MARS, the scattered plot is similar to CART
and is omitted for brevity.

Observe in Figure 1(a) the five discrete estimated MOS
values associated with the five diagonal Gaussian compo-
nents (see (5)) are prominently indicated by the horizontal
locations of the vertical clusters. In this case, the weights
in (5) serve the sole purpose of switching between the five
discrete values.

5. CONCLUSION

A feature selection algorithm is proposed for estimation
based on Gaussian mixture models. The algorithm is targeted
to applications that make use of GMM estimators, as features
are selected to minimize squared GMM estimation errors.
An experiment consisting of predicting the subjective quality
rating of speech is performed. Simulation results show that



Table 1: Performance Comparison: diagonal covariance matrices

Cross Validation Proposed CART MARS

Trials R RMSE R %↑ RMSE %↓ R %↑ RMSE %↓

Trial 1 0.8578 0.4390 0.8083 25.82 0.5016 14.25 0.7926 31.44 0.5206 18.58
Trial 2 0.8539 0.4623 0.8216 18.11 0.5036 8.93 0.7465 42.37 0.5577 20.63
Trial 3 0.8530 0.4479 0.7972 27.51 0.5068 13.15 0.7903 29.90 0.5140 14.75
Trial 4 0.8732 0.4448 0.8206 29.32 0.4930 10.83 0.7661 45.79 0.5821 30.86
Trial 5 0.8416 0.4585 0.7937 23.22 0.5126 11.79 0.6863 49.51 0.6151 34.15
Trial 6 0.8694 0.4266 0.8184 28.08 0.4903 14.93 0.7479 48.20 0.5709 33.82
Trial 7 0.8740 0.4305 0.8171 31.11 0.5111 18.72 0.8089 34.07 0.5243 21.78
Trial 8 0.8656 0.4409 0.8171 26.52 0.4996 13.31 0.8043 31.32 0.5159 17.01
Trial 9 0.8521 0.4623 0.7879 30.27 0.5400 16.80 0.8000 26.05 0.5255 13.67

Trial 10 0.8677 0.4341 0.8122 29.55 0.5061 16.58 0.7313 50.76 0.5919 36.35
Average 26.95 13.93 38.94 24.16

Table 2: Performance Comparison: full covariance matrices

Cross Validation Proposed CART MARS

Trials R RMSE R %↑ RMSE %↓ R %↑ RMSE %↓

Trial 1 0.8931 0.3830 0.8404 33.02 0.4627 20.81 0.8694 18.15 0.4209 9.89
Trial 2 0.8917 0.4005 0.8498 27.90 0.4656 16.25 0.8816 8.53 0.4168 4.06
Trial 3 0.8835 0.3930 0.8452 24.74 0.4480 13.99 0.8651 13.64 0.4218 7.32
Trial 4 0.9023 0.3907 0.8648 27.74 0.4557 16.63 0.8923 9.29 0.4094 4.78
Trial 5 0.8852 0.3923 0.8322 31.59 0.4671 19.06 0.8336 31.01 0.4657 18.71
Trial 6 0.8919 0.3889 0.8498 28.03 0.4531 16.50 0.8742 14.07 0.4173 7.30
Trial 7 0.8953 0.3955 0.8538 28.39 0.4626 16.96 0.8900 4.82 0.4060 2.65
Trial 8 0.9075 0.3644 0.8574 35.13 0.4467 22.58 0.8749 26.06 0.4196 15.14
Trial 9 0.8963 0.3889 0.8329 37.94 0.4846 24.61 0.8553 28.33 0.4541 16.76

Trial 10 0.9047 0.3708 0.8498 36.55 0.4572 23.30 0.8229 46.19 0.4931 32.98
Average 31.10 19.07 20.01 11.96

GMM estimators designed using our proposed algorithm out-
perform two benchmark algorithms. Furthermore, we have
also shown that features selected by the proposed algorithm
are suitable for diagonal GMM estimators, which incur lower
computational complexity.
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