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Abstract—Today, great focus has been placed on context-aware
human-machine interaction, where systems are aware not only of
the surrounding environment, but also about the mental/affective
state of the user. Such knowledge can allow for the interaction to
become more human-like. To this end, automatic discrimination
between laughter and speech has emerged as an interesting, yet
challenging problem. Typically, audio- or video-based methods
have been proposed in the literature; humans, however, are
known to integrate both sensory modalities during conversation
and/or interaction. As such, this paper explores the fusion
of support vector machine classifiers trained on local binary
pattern (LBP) video features, as well as speech spectral and
prosodic features as a way of improving laughter detection perfor-
mance. Experimental results on the publicly-available MAHNOB
Laughter database show that the proposed audio-visual fusion
scheme can achieve a laughter detection accuracy of 93.3%, thus
outperforming systems trained on audio or visual features alone.

Index Terms—speech, laughter, spectral features, cepstral fea-
tures, local binary patterns

I. INTRODUCTION

Laughter is a common non-verbal vocalization that also
includes posture and facial activity changes around the mouth,
cheeks, and often the upper face [1]. Laughter is usually
described as a predominant and involuntary behaviour in social
interaction. As such, automated laughter detection has emerged
as a useful tool to improve human-machine interaction to make
it more human-like, typically by sensing the user’s affective
state and adapting decisions accordingly [2], [3]. Moreover,
laughter detection has also found its way into automatic
speech recognizers, as a way of improving the performance
for spontaneous speech [4]. Since laughter can be caused by
different emotional states, it is a challenging task.

Typically, discrimination between speech and laughter is
achieved with audio features alone. In [5], for example, a
large pool of benchmark audio features from the 2010-2013
Interspeech Conference Challenges and features set based on
formants were tested. In [6], in turn, features included 13-
th order mel frequency cepstral coefficients (MFCCs) and
perceptual linear prediction (PLP) coefficients, along with their
delta (∆) and double-delta (∆∆) coefficients, fundamental
frequency (F0), jitter, shimmer, local root mean square energy
(RMS), harmonic-to-noise-ratio (HNR), zero crossing rate
(ZRC), spectral slope and LP center of gravity, amongst sev-
eral others. Feature selection was performed based on receiver
operating characteristic (ROC) curves and the area under curve
(AUC) measure. Overall, spectral features have been shown
to outperform prosodic ones and both on decision level and

feature level improves the final performance [7], [8], [9], [10].
More recently, integration of audio-visual features for laughter
detection has been explored where the majority of the pub-
lished works have focused on facial points and speech spectral
features. In [7], for example, MFCCs, ∆, energy, pitch and
ZCR were combined with 20 facial point (rigid-face movement
and nonrigid-face-movement points) features extracted using
PatrasPantic particle filtering tracking scheme. Audio features
outperformed video ones and the fusion of the two modalities
improved performance by 2.6%. In [1], in turn, 113 facial point
features were used together with 13 MFCC and ∆ coefficients.
Similarly, audio features outperformed video-based ones and
fusion of the two resulted in improvements of 1.3%. In two
follow-up studies [11], [12], 6 MFCCs (and ZRC in [8])
were used as audio features and 20 facial points for visual
features. Under such setup, gains attained from multimodal
fusion were as high as 4.5% and an overall accuracy of 90.1%
was achieved for speech vs. laughter discrimination. While the
majority of existing papers have focused on facial points to
characterize visual information for laughter detection, recent
work has suggested that local binary pattern (LBP) video
features can be useful for facial expression recognition and
emotion detection [13], [14], [15]. As such, this paper explores
the use of LBP texture features extracted from mouth and eye
regions, as these facial regions provide useful information for
laughter vs speech discrimination. More specifically, the LBP
texture features are extracted from each region independently
and are then concatenated to better encode appearance and
spatial relations of facial regions [13]. The proposed features
are tolerant to illumination changes and are computationally
simpler than the commonly-used facial point features. From
audio, in turn, MFCCs and spectral features are used.

For the task of laughter detection/discrimination, previous
unimodal work has explored the use of Gaussian mixture
model (GMM), hidden Markov model (HMMs), and support
vector machine (SVM) classifiers (see [16], [17], [18], [19]
for more details) with the latter standing out as the top-
performer. Moreover, for audio-visual detection, feature- and
decision-level fusion schemes have been proposed with the
latter typically resulting in improved performances [11], [12].
Following these insights, the present work proposes the fusion
of the decisions from SVM classifiers trained on audio-alone
and video-alone features using a competing scores scheme.

The remainder of paper is organized as follows. Section II
presents audio-visual features used in our experiments. Section
III describes the experimental setup, followed by the Results
and Discussion in Section IV. Lastly conclusions are presented
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in Section V.

II. MULTIMODAL LAUGHTER DETECTION: FEATURES

This section presents the audio-visual features used in the
proposed laughter detection algorithm.

A. Visual Features

Local Binary Patterns (LBP) is a model of texture analysis,
where a texture image can be characterized by its texture
spectrum [20]. The operator labels the examined window into
cells, for each pixel in a cell, compares the pixel to each of
3×3 neighbourhoods and the results are considered as a binary
number. The 256-bin histogram of the LBP computed over a
region is used as a texture descriptor. To be able to deal with
textures at different scales, the LBP operator was extended to
use circular neighbourhoods [13], [21]. A circularly symmetric
neighbour set is composed for a neighbourhood of P sampling
points on a circle of radius R (R > 0) denoted LBPP,R (see
Fig. 1). The P (P > 1) sampling points produce 2P local
binary patterns to describe a texture image. Invariant texture
operator T in a local neighbourhood of a monochrome texture
image can be described in function of gray levels of P , such
as in [21]:

T = t(gc, g0, ...., gP−1), (1)

where gray value gc corresponds to the gray value of center
pixel of the local neighbourhood and gp(p = 0, ...., P = 1)
corresponds to gray values of P .

An alternate extension of LBPs use uniform patterns [15].
An LBP is called uniform if the binary pattern contains at most
two bitwise transitions from 0 to 1 or vice versa when the bit
pattern is considered circular [13]. The final histogram has
a separate bin for every uniform pattern and all non-uniform
patterns are assigned to a single bin. When there are more than
two transitions into a single bin, it is possible to accumulate the
transitions in an operator denoted by LBPu2

P,R, with less than
2p bins. This way, the number of labels for a neighbourhood
of 8 pixels can be reduced from 256 to 59 for LBPu2 [13].
Using the uniform patterns, we can account nearly 90% of all
patterns in the (8,1) neighbourhoods [21].

In our work, we follow the feature extraction approach
described in [13]. More specifically, the Viola and Jones
algorithm was used to detect mouth and eye regions for
each frame [22]. The resulting facial regions were adjusted to
increase the contrast, then converted to grayscale and scaled to
59×97 and 60×89 pixels, respectively. Finally, 59 labels were
calculated for each extracted region in an neighbourhood of 8
pixels using the LBPu2

P,R operator with uniform patterns. In
total, 177 (3×59) descriptors were computed and concatenated
into a single feature histogram to be used for classification.
Figure 2 depicts an example of the original face image and
the detected mouth and eye regions.

Fig. 2. Example of original face image and the cropped eye and mouth
regions

B. Audio Features

As mentioned above, MFCCs have dominated audio-based
laughter detection systems and have been successfully used
across numerous speech applications [1], [6], [7], [8], [9].
MFCCs are compact representations of the speech signal and
its spectral envelope [23]. In [24], it was shown that using
only the first 6 MFCC, similar laughter detection perfomance
could be achieved to systems based on 12 coefficients. As
such, in our experiments, only 6 coefficients are used and were
computed using 40 ms Hamming windows and 10 ms overlap.

In addition to MFCCs, pitch and jitter features were used to
characterize prosodic information. Pitch and jitter have been
used in speech-based emotion recognition and are commonly
used for other speech discrimination tasks (e.g., [25], [26]).
While previous work has suggested that spectral features are
better than prosodic ones for laughter detection [7], [8], we
have decided to use both feature types, as subjective testing has
reported that higher pitch values are present during laughter
than during speech [27]. The pitch estimation algorithm de-
scribed in [28] was used, as it was shown to be more reliable
in noisy conditions. Pitch was measured in the range of 80-600
Hz using a frame length of 100 ms and frame shift of 10ms.
All audio features were extracted from 16kHz downsampled
speech/laughter data. The final audio feature set used for
classification was a 10-dimensional vector comprised of the
average 6-dimensional MFCC, combined with the average and
standard deviation of the pitch and jitter parameters.

III. EXPERIMENTAL SETUP

In this section, brief descriptions of the database and clas-
sification methodology are presented.

A. Database

In our experiments, the MAHNOB Laughter Database was
used [11]. The database contains audio-visual information
from 22 subjects (12 males, 10 females) totalling 563 instances
of spontaneous laughter, 849 spontaneous speech utterances,
51 instances of acted laughter, approximately 50 instances of
posed smiles, and 167 vocalizations other than speech and
laughter. Video recordings were made at 25 frames per second
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Fig. 1. Examples of the extended LBP for various (P,R) values (from [16])

Fig. 3. Sample images from MAHNOB Laughter dataset. Top corresponds
to laughter segments while bottom images to speech utterances.

using a video camera which has a resolution of 720×576
pixels and samples were compressed using the H.364 codec.
Voice samples were obtained using the built-in microphone in
the camera (2 channels, 48 kHz, 16 bits) with a low signal-
to-noise ratio.

The recordings labelled as laughter and speech were used
for our experiment. A total of 13 instances (9 laughter, 4
speech) were excluded in concordance with [11]. As such,
a total of 554 laughter instances and 845 speech utterances
were processed. The list of annotations is administered by the
authors of the MANHOB database. Figure 3 depicts sample
images taken from the MAHNOB database during laughter
(top) and speech (bottom).

B. Classifier Design and Figures-of-Merit

Laughter vs speech discrimination is performed using a
support vector machine (SVM) classifier [29] with a radial
basis function (RBF) kernel, as it has shown to provide
the best performance over other kernels in previous emotion
and laughter discrimination tasks [14], [30]. To estimate the
generalization performance of the classifiers, we perform a
leave-one-subject-out cross-validation methodology. For each
fold, data from one subject is considered to be unseen and

used as the testing set, while data from the remaining subjects
is used for training.

As figures-of-merit, two parameters are used: the per class
F1-measure and the overall classification rate (CR). Both are
reported as percentages and are computed as:

F1 =
2 ∗ precision ∗ recall
precision + recall

, (2)

CR =
TP + TN

TP + TN + FP + FN
, (3)

where TP , TN , FP and FN are true positives, true negatives,
false positives and false negatives, respectively, and

precision =
TP

TP + FP
, (4)

recall =
TP

TP + FN
. (5)

C. Fusion Scheme

Here, decision-level fusion is performed based on a com-
peting scores scheme of the decisions made by the audio-only
and video-only SVM classifiers. More specifically, the outputs
of the individual systems are compared and if they are not
in agreement, the classifier with the highest likelihood score
decides the final class prediction. Thus, if ck(xi) corresponds
to the prediction score for sample xi of each classifier k, then
the final prediction score can be computed as:

C = arg max[c1(xi) . . . ck(xi)], (6)

where k = 2 represents the number of classifiers in the fusion
scheme.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Results

Table I presents the per class F1-measure and classification
rates (CR) for each experiment using the audio-only, video-
only, and audio-visual schemes. As can be seen, the simple
fusion scheme improved increase by 2.2% and 3.7% compared
with audio-only and video-only rates, respectively. This in-
crease is inline with those previously reported in the literature.
The overall CR of 93.3%, however, was higher than those
reported in the literature for the same dataset and experimental
setup [11].
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F1 (Laughter) F1 (Speech) CR
Audio 90.1 (0.11) 88.9 (0.07) 91.9 (0.05)
Video 88.7 (0.15) 71.7 (0.26) 89.6 (0.08)
Audio-visual 92.7 (0.07) 91.6 (0.06) 93.3 (0.06)

TABLE I
MEAN (AND STANDARD DEVIATION) OF THE F1 AND CLASSIFICATION

RATES (CR) FOR LAUGHTER-VS-SPEECH DISCRIMINATION

B. Discussion: Unimodal laughter detection

For video-only classification, we obtained a CR of 89.6%
using the proposed LBP features. These results outperform
those reported in [11] for the same dataset (and leave-one-
subject-out experimental methodology), but which relied on
facial point features instead. Such findings suggest that LBP
features are indeed useful for laughter detection from videos
and should be considered in future systems.

Mouth and eyes regions have been widely used in speech
and emotion recognition due to geometric-type features vari-
ations, such as height, width and area [31], [32]. In our work,
the LBP texture features were extracted using these areas. it
allowed to minimize the number of LBP histograms used to
represent facial expression proposed in previous studies [13],
[14], where the face images were equally divided into small
areas to extract the LBP coefficients.

Moreover, as in previous studies, our results show that
audio-only classification outperformed video-based classifica-
tion and achieved an overall CR of 91.9%. Since laughter can
be accompanied by subtle facial expressions, this can explain
the fact that visual information can be less representative for
the discrimination task than the information contained in voice
features [7]. Overall, the audio-only scheme outperformed the
video one by 2.3%. Moreover, an improvement of 2.1% over
the results reported in [33] show the benefits of grouping
spectral and prosodic features for the task at hand.

C. Discussion: Multimodal laughter detection

Laughter and speech are both audio-visual events that
contain representative information from each modality for the
discrimination task. As such, it is expected that audio-visual
fusion results in improved performance. This was indeed the
case and the proposed decision-level fusion scheme outper-
formed those reported in [11] by 3.2%. In general, the visual
scheme provides information which cannot be corrupted by
acoustic noise in the environment and therefore may improve
the final performance.

The confusion matrix for the audiovisual approach are
shown in Table II . The main source of confusion for the
final scheme is speech utterances being classifier as laughter
episodes, whereas a few of laughter episodes being classifier
as speech utterances. In our work, we believe that the main
explanation for the better performance for laughter over speech
events is the facial expression of the subject, a smile produced
by subjects helps the audiovisual system. However, when the
speech is produced with a smile-like expression, then the
visual information does not help the system.

Predicted laughter Predicted speech
Actual laughter 54.9% 0.8%
Actual speech 5.9% 38.4%

TABLE II
CONFUSION MATRIX FOR AUDIOVISUAL CLASSIFICATION

V. CONCLUSIONS

This paper has explored the use of local binary pattern
(LBP) video features for laughter detection, as well as their
fusion with spectral and prosodic speech information for multi-
modal laughter detection. Experimental results on a publicly-
available dataset show the LBP features achieving superior
performance relative to conventional facial point features.
Once fused with audio features via a simple decision level
fusion scheme, improvements of up to 3.7% could be achieved
relative to using the video features alone. Overall, a classifi-
cation rate of speech versus laughter detection of 93.3% was
achieved, thus outperforming results previously reported in the
literature for the same dataset and experimental setup.
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