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Abstract
A voice quality prediction method based on Gaussian
mixture models (GMMs) is improved by constructing a
feature selection algorithm to provide the best GMM-
based prediction quality. The proposed sequential se-
lection algorithm performs N -survivor search, allowing
for trading between design complexity and performance.
Simulation shows that predictors designed using the pro-
posed algorithm outperform two benchmark selection al-
gorithms. Performance improvements over the ITU-T
P.862 PESQ standard are also attained.

1. Introduction
In [1], a novel method of speech quality estimation based
on Gaussian mixture models (GMMs) is proposed. First,
perceptual features are extracted from the distortion sur-
face between an original speech signal and its degraded
counterpart. Salient features are then selected using two
statistical data mining methods, multivariate adaptive re-
gression splines (MARS) [2] and classification and re-
gression trees (CART) [3]. Lastly, features are mapped to
a mean opinion score (MOS) [4] by means of a minimum
mean squared error (MMSE) GMM-based estimator.

When designing GMM-based estimators, the features
selected by CART or MARS may not lead to high esti-
mation accuracy as the selection process is optimized for
CART/MARS regressors. Indeed, in [1], diagonal covari-
ance GMMs are shown to provide only modest perfor-
mance and this is attributed to inherent characteristics of
the features selected by CART or MARS. Here, we im-
prove feature selection by proposing a feature selection
algorithm whose selection criterion is the quality of the
GMM-based estimator.

Simulation results show that the GMM-based es-
timators designed using the proposed algorithm bet-
ter predict voice quality when compared to estimators
trained on features selected by CART or MARS. Further-
more, an experiment performed on unseen data demon-
strates that performance improvement over the Interna-
tional Telecommunications Union ITU-T P.862 standard,
also known as Perceptual Evaluation of Speech Quality
(PESQ) [5], is attained.

2. GMM-Based Voice Quality Prediction
2.1. Background

The goal in MMSE voice quality prediction is to find a
set of features, represented by the feature vector x, and
a regression function f̂(x) that maps features to a pre-
dicted MOS. Both x and f̂(x) are chosen to minimize the
mean squared error, εMSE , between f̂(x) and the subjec-
tive MOS (y), viz εMSE = E[(y − f̂(x))2]. It is known
that εMSE is minimized when f̂(x) = E[y|x], the condi-
tional expectation of the subjective MOS, given x. Before
we introduce GMM-based estimators, a brief description
of GMMs is given for the sake of notation.

A Gaussian mixture density is a weighted sum of M
component densities

p(u|λ) =
M∑

i=1

αi.bi(u) (1)

where αi ≥ 0, i = 1, ..., M are the mixture weights, with∑M
i=1 αi = 1, bi(u), i = 1, ...,M are the K-variate

Gaussian densities with mean vector µi and covariance
matrix Σi. The Gaussian mixture density is parameter-
ized by the elements λi = [µi, Σi, αi] which are esti-
mated via the EM algorithm [6]. We use the k-means
algorithm to initialize the GMM parameters.

The GMM-based estimators rely on modelling the
joint density of u = [y,x]T with (1). Given the GMM
parameters, the MMSE regression function is [7]

E[y|x] =
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i=1
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i (Σxx
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j )]. (2)

The above estimator is a weighted sum of linear mod-
els, where the weight hi(x) is the probability that the ith

Gaussian component generated the vector x and given by
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Next, a description of the proposed feature selection
algorithm is given.



2.2. Feature Selection

The proposed algorithm starts with an empty feature set
and features from a candidate feature set are added to the
set progressively. To determine which candidate feature
to add, the algorithm tentatively adds to the current fea-
ture set one feature that is not already selected to form
an augmented feature set. The joint density of the target
variable and the augmented feature set is modelled with a
GMM, with model parameters λ estimated using the EM
algorithm. The accuracy of the GMM estimator using λ
is then calculated. The above is repeated for every can-
didate feature and corresponding GMM. The candidate
feature that produces the least regression error is admit-
ted into the current feature set to form an updated feature
set. The algorithm stops when the desired number of fea-
tures has been selected. Note that the proposed algorithm
progressively constructs f̂ as features are being selected.

It is worth mentioning that for each candidate feature
the best number of Gaussian components in (1) can be
determined by checking different values of M . Using the
notation “EM” to stand for GMM parameter estimation
via the EM algorithm, f̂k for the mapping function with
k variables, and D for the desired number of features,
the algorithm can be summarized as follows:

(0) Let I = {1, . . . , n}, S = ∅, k = 1;
(1) λi ← EM(y, S ∪ {xi}), ∀i ∈ I;
(2) ik = arg min

i∈I

∑
j(yj − f̂k(S ∪ {xi}|λi))2;

(3) I ← I − {ik}, S ← S ∪ {xik
}, k ← k + 1.

(4) Go to step 1, stop if k > D.

2.3. N -Survivor Search

With a corresponding increase in computational com-
plexity, the algorithm can perform sequential multiple-
survivor search. So far, the algorithm description has fo-
cused on one survivor, i.e., the one feature variable that
minimizes estimation error. In N -survivor search, at each
iteration, the N features that assume the top-N ranks in
minimizing the estimation error are kept as “survivors.”
A tradeoff between complexity and performance can be
adjusted by tuning the parameter N .

If the ultimate goal is to find D features out of n can-
didate features, then N survivors are kept in iterations
i = 1, 2, . . . , D − 1. At iteration i = 1, the algorithm se-
lects the N best features out of the n available candidates.
At iterations 1 < i < D the N best ranked features, out
of the N(n − i + 1) possible feature combinations, are
kept. Lastly, at iteration i = D, the single best feature is
kept. The last best feature and its ancestor features con-
stitute the set of features selected by the search process.

The next section is dedicated to testing the accuracy
of the proposed algorithm. Comparisons with GMM es-
timators trained on features selected by CART or MARS
are carried out in the first experiment. Comparisons with

PESQ are shown in the second, and an estimation test
with unseen data is described in the third experiment.

3. Performance Results
The GMM for speech quality estimation is built on per-
ceptual feature variables obtained by classifying percep-
tual distortions under a variety of contexts to form a pool
of 209 candidate features [1]. Thirteen MOS labelled
speech databases are used, containing a total of 5864
speech files. We use 10-fold cross validation to pro-
vide robustness in the performance evaluation. Estima-
tion performance is assessed by the correlation (R) be-
tween subjective MOS and estimated MOS and by root-
mean-square MOS error (RMSE).

3.1. Experiment I

The first experiment compares GMM estimators trained
on features selected by our proposed feature selection
algorithm to estimators trained on features selected by
CART or MARS. For this experiment we check all per-
missible values of M at each iteration. To allow compar-
isons with [1] we search for D = 5 features. We restrict
M ≤ 5 in order to maintain an adequate training ratio
(ratio between the number of parameters that have to be
estimated and the total number of files in the training set)
of 37 for full covariance matrices and 81 for diagonal ma-
trices.

Let Mi be the number of Gaussian components cho-
sen in iteration i of the proposed algorithm, it was
found that the following combinations were often se-
lected throughout the ten cross validation trials:

• Diagonal: M1 = 4, M2 = M3 = M4 = M5 = 5;

• Full: M1 = 2, M2 = 3, M3 = M4 = 4, M5 = 5.

Note that over the five algorithm iterations (D=5) used
in this experiment the number of Gaussian components
either increases or stays the same as the algorithm pro-
gresses. As expected, full covariance GMMs use fewer
Gaussian components at the beginning, and the number
of components increases with the number of features.

Figures 1 (a) and (b) compare performance figures
for a 5-component GMM estimator designed using the
proposed algorithm to that of an estimator designed us-
ing CART or MARS, for diagonal and full covariance
matrices, respectively. Note that the proposed algorithm
achieves higher R and lower RMSE for all ten cross val-
idation trials.

More precisely, if the percentage improvement in R
is defined as

% ↑ R =
Rnew −Rold

1−Rold
× 100% (4)

where Rnew and Rold are the correlation obtained using
the proposed method and using CART or MARS, respec-



tively; diagonal GMM estimators incur an average im-
provement in R of 26.95% and 38.94 % when compared
to CART and MARS, respectively. An average improve-
ment of 31.10% and 20.01% is achieved for full GMM es-
timators. In turn, diagonal predictors trained on the pro-
posed algorithm reduce RMSE by an average of 13.93%
and 24.16% when compared to CART and MARS, re-
spectively. An average decrease of 19.07% and 11.96%
is obtained for full covariance GMMs.

If multiple survivor search is carried out, performance
can be improved. There is, however, a linear increase in
design complexity. The 1-survivor algorithm needs to in-
voke the EM algorithm M

∑D
i=1(n−i+1) times, n being

the total number of candidate features and D the desired
number of features to be selected. Here, n = 209 and
D = 5. By using the N -survivor approach, the number
of EM invocations increases to NM

∑D
i=1(n− i + 1).

A simple experiment is carried out with N = 2 and sim-
ulations show that an improvement of 7.21% in R and a
reduction of 3.12% in RMSE can be attained by using
2-survivor search relative to single-survivor search.

3.2. Experiment II

In this experiment we compare performance of the
GMM-based voice quality predictor to the performance
of PESQ with the mapping proposed in [8]. Table
1 summarizes the performance figures; the column la-
belled “↑%R” shows improvement in R relative to PESQ
by using a 5-component GMM estimator, trained with
features selected by the proposed algorithm. Simi-
larly, “↓%RMSE” denotes decrease in RMSE rela-
tive to PESQ. Full GMM estimators outperform PESQ
by 26.12% and 18.04% in R and RMSE, respectively.
With 2-survivor search, an average improvement of ap-
proximately 29% in R and an average decrease of 19.51%
in RMSE is attained. Additionally, it is important to
note that, despite lower performance, full GMM estima-
tors trained on features selected by CART or MARS also
outperform PESQ, as was shown in [1].

3.3. Experiment III

In this last experiment, the proposed algorithm is tested
on unseen data, i.e., data that has not been used in the
training of the GMM predictors. Two unseen test data-
bases are used, each comprised of approximately 3000
subjectively scored speech file pairs, with speech under
various degradation conditions. For both databases, the
proposed algorithm achieves an average 5% lower cor-
relation when compared to PESQ. However, for the first
database, the proposed algorithm reduces RMSE by an
average 41%. For the second database, an average de-
crease of 19% is attained. It is important to realize that
RMSE is a more realistic measure of estimator perfor-
mance. It can be shown that RMSE is the sum of un-

explained variance in the regression model, MOS estima-
tion error due to limited number of listeners (affecting
all algorithms equally), and bias error between subjective
MOS and objective MOS. The calculation of R does not
take into consideration this bias error [1].

4. Conclusion
We have proposed a feature selection algorithm for
speech quality assessment based on Gaussian mixture
models. The algorithm provides for trading between
complexity and performance by adjusting the number of
survivors searched. Simulation results show that GMM
estimators designed using the proposed algorithm out-
perform two benchmark selection algorithms, with N -
survivor search providing better performance. Further-
more, a test on unseen data shows that the proposed al-
gorithm reduces RMSE by an average 32% relative to
PESQ.
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Figure 1: Correlation R and RMSE comparisons between GMM estimators trained on features selected by CART,
MARS, and the proposed algorithm for (a) diagonal and (b) full GMM estimators.

Table 1: Performance comparison: PESQ and proposed algorithm

Cross Validation PESQ 1-Survivor (diagonal) 1-Survivor (full) 2-Survivor (full)

Trials R RMSE ↑%R ↓%RMSE ↑%R ↓%RMSE ↑%R ↓%RMSE

Trial 1 0.8568 0.4643 0.70 5.44 25.35 17.51 29.26 19.53
Trial 2 0.8535 0.4871 0.27 5.09 26.08 17.78 26.08 17.78
Trial 3 0.8460 0.4809 4.55 6.86 24.35 18.27 29.81 20.84
Trial 4 0.8670 0.4670 4.66 4.75 26.54 16.33 30.23 18.24
Trial 5 0.8449 0.4811 -2.13 4.69 25.98 18.46 28.18 19.58
Trial 6 0.8564 0.4668 9.05 8.61 24.72 16.69 28.90 18.81
Trial 7 0.8738 0.4633 0.16 7.08 17.04 14.63 22.35 17.09
Trial 8 0.8581 0.4801 5.29 8.16 34.81 24.09 34.81 24.09
Trial 9 0.8608 0.4695 -6.25 1.53 25.50 17.17 27.51 18.23
Trial 10 0.8623 0.4604 3.92 5.71 30.79 19.46 33.55 20.98
Average 2.02 5.79 26.12 18.04 29.07 19.52


