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Abstract
We propose an algorithm to classify speech degradations
at network endpoints and to estimate the speech quality
based on the degradation classification decision. Percep-
tual features from degraded speech signals are used to
form statistical reference models of different degradation
classes. Consistency measures, calculated between de-
graded speech signals and the reference models, are used
to train a degradation classifier and mean opinion score
(MOS) mappings. The quality of a received speech signal
is estimated based on its degradation class and the MOS
mapping associated with the class. Experimental results
show that the proposed algorithm achieves high classifi-
cation accuracy, and degradation classification improves
the accuracy of the quality estimate.
Index Terms: speech communication network, speech
degradations, speech transmission impairments, degrada-
tion classification, speech quality measurement.

1. Introduction
Quality assurance of speech communication networks be-
comes increasingly challenging with fast development of
new speech communication technologies. While new
technologies bring new services and lower costs, they
also complicate end-to-end voice telephony connections
and aggravate the uncertainty of voice quality. Today,
voice transmitted over networks is exposed to a plethora
of different sources of degradation, each with its own pe-
culiar impairment to voice quality. Accurate identifica-
tion of degradations enables deployment of appropriate
corrective measures to assure the quality of service de-
livered. For real-time quality monitoring, knowing the
degradation sources of an impaired speech signal helps
to estimate the speech quality more accurately.

For end-to-end speech communication, acoustic noise
is a significant factor of speech quality degradation. To
combat ambient noise, noise suppression (NS) is intro-
duced and has become an essential part of communica-
tions equipment, such as mobile and hands-free phones.
While NS improves speech quality by reducing the back-
ground noise, it also distorts the speech signal and in-
troduces annoying artifacts such as musical noise. There-
fore, NS forms a distinctive type of degradation. Over the
years we have seen a continuous migration of voice calls
from conventional networks to Voice over Internet Pro-
tocol (VoIP) networks. In IP based telephony networks,
packets can be lost and packet loss concealment (PLC)

algorithms are used to recover from lost packets. While
PLC algorithms partially recover the speech quality, the
PLC enhanced speech signal still contains distortions due
to packet loss and recovery, thus forming a specific type
of degradation. Moreover, voice transmitted over hetero-
geneous networks may be processed by a sequence of
codecs constituting a tandeming condition. Processing by
a tandem of codecs may also result in noticeable degrada-
tions. Other sources of degradations may include circuit
noise, bit errors, and echoes.

Accurate estimation of voice quality is essential for
quality assurance of voice telephony networks. For this
purpose, many objective quality measurement algorithms
have been proposed. The ITU-T P.862 standard (PESQ),
is the current “start-of-art” double-ended algorithm [1].
Single ended algorithms [2, 3, 4], on the other hand,
do not depend on a reference signal therefore are more
amenable for real-time speech quality monitoring. Most
of these algorithms measure the received speech qual-
ity without analysis of the underlying speech degrada-
tion sources. Degradations from different sources have
distinctive behaviors and certainly contribute differently
to the impairment of speech quality. Therefore, speech
quality might be more accurately estimated if degrada-
tions impairing the speech signal are known. Moreover,
such knowledge facilitates the deployment of corrective
measures, in real-time or otherwise [5].

In this paper, we describe an algorithm to classify
speech degradations and to estimate speech quality based
on the classification decision. Perceptual features of de-
graded speech are used to build separate degradation ref-
erence models, one for each degradation class. A clean
speech reference model is also created. Given a degraded
speech signal, consistency measures are computed for the
perceptual features of the signal relative to each refer-
ence model. A degradation classifier maps the consis-
tency measures to a classification decision. The speech
quality is estimated based on the classification decision
and a MOS mapping. The proposed algorithm achieves
high classification accuracy and superior quality estima-
tion performance.

2. Algorithm Description
2.1. Algorithm Overview

The architecture of the proposed algorithm is depicted
in Fig. 1. Offline, perceptual features extracted from



degraded speech signals are used to train a reference
model and a MOS mapping for each individual degrada-
tion class. A clean speech reference model is also trained.
Each reference model comprises multiple Gaussian mix-
ture models (GMMs). Consistency measures calculated
with respect to the reference GMMs are used to train
a speech degradation classifier and each degradation-
specific MOS mapping.
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Figure 1: Architecture of the proposed algorithm.

Online, the received speech signal experiences trans-
mission distortions in the communications network. In
general, the signal can be subject to several types of
degradations. As an initial step towards degradation clas-
sification, we assume in this paper that the signal is sub-
ject to only one type of distortion. In practice, the quality
degradation may be mainly caused by one type of distor-
tion, and/or the network may choose to ameliorate only
the dominant distortion. The degraded speech signal is
first pre-processed by the proposed algorithm, where the
level of the speech signal is normalized. Perceptual fea-
tures are then extracted from the preprocessed speech sig-
nal every 10 milliseconds. The voice activity detector
(VAD) and voicing classifier label the feature vector of
each frame as either voiced, unvoiced, or inactive. Con-
sistency measures are calculated between the degraded
speech signal and the GMM reference models. A degra-
dation decision is then made by the degradation classifier.
Once a degradation class is decided, a MOS mapping cor-
responding to the class is applied to obtain a MOS esti-
mate for the degraded speech signal. A detailed descrip-
tion of each processing block of the algorithm is provided
in the remainder of this section.

2.2. Pre-processing, VAD and Feature Extraction
The pre-processing module normalizes the speech signal
level to -26 dBov. The VAD from ITU-T G.729B [6] and
the voicing decision algorithm described in [7] are used to
label the frames. As for perceptually relevant features, we
investigate usingpth order perceptual linear prediction
(PLP) [8] cepstral coefficients,x = {xi}p

i=0. PLP cep-
stra exploit three essential psychoacoustic precepts (crit-
ical band spectral resolution, equal-loudness curve, and
intensity loudness power law) and have been proven to
be more consistent with human auditory perception than
speech-production-based linear predictive analysis. Be-
cause of these attractive properties, PLP features have
been used in speech quality estimation [4] and speech
recognition [8], and are used here as features for degra-

dation classification. We experiment with several PLP
orders andp = 5 is chosen as it strikes a balance between
performance and complexity.

2.3. Reference GMMs and Parameter Estimation
Reference modeling of each degradation class is accom-
plished by using GMMs to represent the probability dis-
tribution of PLP features from the class. A GM density
is a weighted sum ofM component densitiesp(x|λ) =∑M

i=1 αibi(x), whereαi ≥ 0, i = 1, · · · ,M are the
mixture weights, with

∑M
i=1 αi = 1, andbi(x) areK-

variate Gaussian densities with mean vectorµi and co-
variance matrixΣi. λ represents the GMM parameter set
{αi, µi,Σi}M

i=1, which is estimated by an EM algorithm.
Reference models are created for four degrada-

tion classes: acoustic noise, noise suppression, codec-
tandeming, and packet loss concealment. A clean speech
class is also formed to distinguish high-quality speech
signals from degraded speech signals. For each degra-
dation class, and the clean speech class, three GMMs are
designed, one for each of the three different speech frame
types (voiced, unvoiced, inactive). Hence, each GMM
can be denoted bypclass,frame(x|λ), where the subscript
“class” represents a degradation class or the clean speech
class, and the subscript “frame” indicates a frame type.

2.4. Consistency and Classifier Design
In principle, by evaluating the density of a reference
GMM pclass,frame(x|λ) using a feature vectorx from the
received signal, a measure of consistency between the
feature vector and the reference GMM is obtained. Thus,
the consistency between an observed speech signal and
a reference GMM is defined as the normalized log-
likelihood

cclass,frame(X) =
1

Nframe

Nframe∑

j=1

log(pclass,frame(xj |λ)), (1)

whereX = {xi}Nframe
i=1 are the feature vectors that be-

long to a given frame type, andNframe represents the to-
tal number of such feature vectors. Normalization is re-
quired asNframe varies for different test signals. Larger
cclass,frame indicates greater consistency. In the rare case
of Nframe = 0, a constantcclass,frame = c = −10 is as-
signed. For each test signal, a total of fifteen consistency
measures are computed, one for each of the five classes
and three frame types.

Online, the consistency measures of the test speech
signal serve as input to a trained degradation classifier for
a degradation class decision. Offline, consistency mea-
sures of degraded speech signals, along with their respec-
tive degradation class information, are used to train the
degradation classifier. We experiment with two candidate
classifiers: Support Vector Machine (SVM) and Classi-
fication and Regression Tree (CART) [9]. Simulation
results indicate that the SVM based classifier achieves
lower classification error rate. The classification results
presented in Section 3.2 are all based on using SVM.

2.5. MOS Mapping Design
The consistency measures are also used to train each
degradation-specific MOS mapping. In a previous work



[10], consistency measures are calculated with respect
to a ‘global’ degradation reference model and a clean
speech reference model, and there is only one MOS map-
ping. With degradation classification, reference models
and MOS mappings can be tailored to each degradation
class. It is possible for the class dependent MOS mapping
to provide a more accurate MOS estimate than the global
MOS mapping, provided that the degradation class is cor-
rectly determined by the classifier. Hence, it is of interest
to compare the quality estimation performance of using
the classifier against the performance of using the global
model, as will be done in Section 3.3.

The design of MOS mappings using consistency mea-
sures is as follows. Offline, a weighted consistency mea-
sure is formed by taking the product of the consistency
measure (1) and the fraction of the frame type in the
speech signal. The weighted consistency measures of de-
graded speech signals, along with their respective sub-
jective MOS data, are used to train the MOS mappings.
Each mapping is optimized for a given degradation class
and uses consistencies calculated with respect to the clean
speech model and the specific degradation model. On-
line, the MOS mapping that corresponds to the classifica-
tion decision is applied to produce a MOS estimate for the
test signal. We experiment with Support Vector Regres-
sor (SVR) and Multivariate Adaptive Regression Splines
(MARS) [9] as MOS mapping functions. Simulation re-
sults indicate that SVR attains better performance. The
quality estimation results presented in Section 3.3 are all
based on using SVR.

3. Experimental Results
3.1. Database Description

The degraded and clean speech signals used in our exper-
iments are taken from two publicly available databases
(NOIZEUS [11] and ITU-T P-Series Supp. 23 [12]) and
one proprietary database. The NOIZEUS database con-
tains speech signals corrupted by eight different types of
real-world noise at four SNR levels (0, 5, 10, and 15
dB), and is used to represent degradations due to acoustic
noise. Furthermore, each noise corrupted speech signal
is processed by thirteen different NS algorithms. The NS
algorithms can be divided into four categories: spectral
subtractive, subspace, statistical-model, and Wiener [11].

The proprietary database contains speech signals pro-
cessed by G.711, G.729 and Adaptive Multi-Rate (AMR)
codecs, with packet loss concealment (PLC). Random
and bursty losses are simulated at 4%, 7%, and 10%, re-
spectively. These speech signals are used to represent
the degradation class of PLC. Moreover, the database
also contains speech signals corrupted by four types of
noise (white, car, street, babble) at three SNR levels
(0, 10, 20dB). These speech signals are used as addi-
tional acoustic noise degradation conditions. The ITU-T
Supp. P. 23 Experiment 1 database has a variety of codec
tandeming conditions involving ITU-T speech coding
standards (G.729, G.726, and G.728) and codecs (Full-
Rate GSM, IS-54 and Half-Rate JDC) deployed in digital
mobile radio systems. Lastly, clean speech signals are
selected from the ITU-T Supp. P. 23 Experiment 1 and

Table 1: Confusion matrix for classification test set

Actual Predicted Category Accuracy

Category
Acoustic NS PLC Tandem Clean

Rate (%)

Acoustic 470 10 0 0 0 97.9

NS 31 797 2 2 0 95.8

PLC 1 0 167 0 0 99.4

Tandem 0 0 0 144 0 100

Clean 0 0 0 1 663 99.8

Average – – – – – 97.9

3 databases. The aforementioned speech databases are
organized by the degradation conditions described above
and each of the four degradation classes under study is
represented by a range of such conditions.

Speech signals from each degradation class are di-
vided into three groups. The first group, called the train-
ing dataset, is used to train the GMM reference models.
The second group, called the validation dataset, is used
to train the MOS mapping for each degradation class and
to train the degradation classifier. The third group, called
the test dataset, comprises speech signals regarded as un-
seen and is used for classification and quality estimation
testing. For quality estimation, the test dataset consists
of 724 speech signals, with 63 degradation conditions.
Since subjective MOS data is not required for degrada-
tion classification, the test dateset for testing the classifier
comprises 2288 speech signals.

3.2. Classification Performance

Table 1 presents the classification result in terms of a
confusion matrix. The five test classes are denoted by
“Acoustic,” “NS,” “PLC,” “Tandem,” and “Clean,” re-
spectively in the table. Each element of the confusion
matrix represents the number of test signals that are clas-
sified to the predicted category. Therefore, elements on
the diagonal represent the number of correctly classified
signals, while the others represent the number of mis-
classified signals. Classification accuracy rate, for each
degradation class, is reported on the last column on the
right. The average accuracy rate is also reported.

As can be seen, the proposed algorithm achieves high
classification accuracy for most degradation classes, ex-
cept for some classification errors between acoustic noise
and noise suppression. An average accuracy rate of
97.9% is attained. Further investigation reveals that the
31 NS signals misclassified as “Acoustic” contain a fair
amount of background noise after suppression. More-
over, of these misclassified signals, 30 are from three
NS algorithms (two spectral subtractive and one Wiener
based) which seem to provide insufficient noise reduc-
tion. This experiment also tests the robustness of the pro-
posed algorithm. Test signals are comprised of degra-
dation conditions unseen to the classifier, such as packet
loss at different rates and different types of acoustic noise,
as well as languages other than the ones used in training;
classification performance is, therefore, promising.



Table 2: Confusion matrix for quality estimation test set

Actual Predicted Category Accuracy

Category
Acoustic NS PLC Tandem Clean

Rate (%)

Acoustic 203 1 0 0 0 99.5

NS 8 199 1 0 0 95.7

PLC 1 0 167 0 0 99.4

Tandem 0 0 0 144 0 100

Average – – – – – 98.5

Table 3: Performance comparison between the global
model based algorithm and the classifier based algorithm

Global Model Based Classifier Based

R ε R %R ε %ε

Per Cond. 0.753 0.374 0.831 10.4 0.308 17.6

Poly. Regress. 0.772 0.341 0.851 10.2 0.282 17.3

3.3. Single-Ended Quality Estimation Performance
Here, we compare the performance of the proposed
single-ended quality measurement algorithm and the ap-
proach proposed in [10], where a single global MOS
mapping is devised. Due to degradation-specific MOS
mappings, the performance of the proposed algorithm is
directly impacted by the performance of the classifier. It
is, thus, important to also test the effect of degradation
misclassification on quality estimation performance. Ta-
ble 2 shows the confusion matrix for the quality estima-
tion test set. As can be seen, classification performance
similar to that presented in Table 1 is attained.

The results in Table 3 serve to compare the proposed
algorithm with the “global degradation model” paradigm
of [10]. Per-condition correlation (R) and root-mean-
square error (ε) between subjective MOS and estimated
MOS are presented, for the two compared algorithms.
The per-condition results after3rd order monotonic poly-
nomial regression, as recommended in [2], are presented
as well. The table also shows performance percentage
improvement attained by the proposed algorithm over the
global model based algorithm, in the two columns la-
belled “%R” and “%ε”. It can be seen that the proposed
algorithm outperforms the global model based algorithm,
indicating that quality estimation performance can be im-
proved by using degradation classification. A10.2% in-
crease inR and 17.3% decrease inε can be attained
on the test dataset. For comparison, P.563 [2] achieves
R = 0.668 andε = 0.398 on the same test dataset, after
3rd order monotonic polynomial regression. P.563 attains
relatively poor performance on NS and PLC enhanced
speech, corroborating prior results [4] and [13].

The performance figures of the proposed algorithm
in Table 3 correspond to the classification results shown
in Table 2. In the ideal case where all test signals are
correctly classified, the proposed algorithm attains best
possible performance:R = 0.854, ε = 0.279 after 3rd

order monotonic polynomial regression. Thus, the per-
formance loss due to misclassification is small as long as

the classifier maintains a high accuracy rate.

4. Conclusions
An algorithm is proposed for speech degradation classifi-
cation and applied to improve quality estimation perfor-
mance. The classifier is shown to achieve accurate per-
formance on an unseen test dataset. When used to assist
in a single-ended speech quality measurement task, an
improvement in R and in RMSE of approximately 10.2%
and 17.3%, respectively, is attained.
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