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ABSTRACT- A generalisation of the Shannon complex
wavelet is introduced, which is related to raised cosine
filters. This approach is used to derive a new family of
orthogonal complex wavelets based on the Nyquist
criterion for Intersymbolic Interference (I19)
elimination. An orthogonal Multiresolution Analysis
(MRA) is presented, showing that the roll-off parameter
should be kept below 1/3. The pass-band behaviour of
the Wavelet Fourier spectrumis examined. The left and
right roll-off regions are asymmetric; nevertheless the
Q-constant analysis philosophy is maintained. Finally,
a generalisation of the (sguare root) raised cosine
waveletsis proposed.

Key-words- Multiresolution  Analysis, Wavelets,
Nyquist Criterion, Intersymbolic Interference (151).

1. INTRODUCTION

Wavelet analysis has matured rapidly over the past
years and has been proved to be vauable for both
scientists and engineers [1,2]. Wavelet transforms have
recently gained numerous applications throughout an
amazing number of areas [3, 4]. Another strongly
related tool is the Multiresolution anaysis (MRA).
Since its introduction in 1989 [5], MRA representation
has emerged as a very attractive approach in signal
processing, providing a local emphasis of features of
importance to a signal [2, 6, 7]. The purpose of this
paper is twofold: first, to introduce a new family of
wavelets and then to provide a new and complete
orthogonal multiresolution analysis. We adopt the
symbol := to denote equals by definition. As usual,
Sinc(t):=sin(pt)/pt and Sa(t):=sin(t)/t. The gate function
of length T is denoted by © %g. Wavelets are denoted

by y(t) and scaling functions by f(t). The paper is
organised as follows. Section 2 generalises the Sinc
MRA. A new orthogonal MRA based on the raised
cosine is introduced in section 3. A new family of
orthogonal wavelet is dso given. Further
generalisations are carried out in section 4. Finaly,
Section 5 presents the conclusions.

2. A GENERALISED SHANNON WAVELET
(RAISED-COSINE WAVELET)

The scaling function for the Shannon MRA (or Sinc
MRA) is given by the sample function:
f S (t)=Snct). A naive and interesting
generalisation of the complex Shannon wavelet can be
done by using spectral properties of the raised-cosine

filter [8]. The most wused filter in Digita
Communication Systems, the raised cosine spectrum
P(w) with a roll-off factor a, was conceived to
eiminate the Intersymbolic Interference (I1Sl). Its
transfer function is given by

i 1

-,'[- L 12p _ 0flwk(@-a)p
P(w):%ihcosguwrp(l-a))g @-a)p £lwi (1+a)p

: 0 |wp (1+a)p.
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The "raised cosine" frequency characteristic therefore
consists of a flat spectrum portion followed by a roll-
off portion with a sinusoidal format. Such spectra
shape is very often used in the design of base-band
digital systems. It is derived from the pulse shaping
design criterion that would yield zero 1Sl, the so-called
Nyquist Criterion. Note that P(w) is a real and non-
negative function [8], and in addition
2 P(w+I = i . (2)
?z (w+12p) »
Furthermore, the following normalisation condition
holds: %djp(w)dw:]"

We propose here the replacement of the Shannon
scaling function on the frequency domain by a raised
cosine, with parameter a (Fig. 1). We assume then that
F(w)=P(w). In the time domain this corresponds
exactly to the impulse response of a Nyquist raised-
cosine filter.
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Figure 1. Fourier Spectrum of the raised cosine
scaling function.

-(1+a)p

The generalised Shannon scaling function is therefore;

f (o) gy = _COSAPL gody. ©)

1- (2at)?
In the particular case a=0, the scaling function
simplifies to the classical Shannon scaling function. As
a consequence of the Nyquist criterion, the scaling
function presents zero crossing points on the



unidimensional grid of integers, n=+1,+2,+3,... .This
scaling function f defines a non-orthogonal MRA.
Figure 2 shows the scaling function corresponding to a
generalised Shannon MRA for afew values of a.

f GSha(t T T T R R T

TF
o
L4

t

Figure 2. Scaling function for the raised cosine wavelet
(generaised Shannon scaling function).

3. MULTIRESOLUTION ANALYSIS BASED ON
NYQUIST FILTERS

A very simple way to build an orthogonal MRA viathe
raised cosine spectrum [8] can be accomplished by
invoking Meyer's central condition [6]:
8 |F (w+2pn) = = Q)
nz 2p
Comparing egn(2) to egn(4), we choose
F(w) =/P(w) (i.e asquare root of the raised cosine
spectrum). Let then

i 1
SN OE|wi (L- a)p
F(W)={———cos——(lw|-(L- a)p) (L- a)p E|lw|<(1+a)p
R WP @+a)p.
f
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Clearly,

& F (w+2pn) =

the raised cosine shape alows an orthogona MRA.
The scaling function f(t) is plotted in the spectral
domain (Fig. 3).
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Figure 3. Spectral Characteristic of the "de Oliveira"
orthogonal MRA.

The cosine pulse function PCOS defined below plays
an important role on the raised cosine MRA.

Definition 1. The cosine pulse function of parameters
to, Jo, Wo and B is defined by

%NWO

PCOS\w; t,,0,, W,, =
(w;ty,0, o

) cos(wt, +q,

t01q01WO|BT A, 0<B<W0. N |

It corresponds to a cosine pulse (in the frequency
domain), with frequency t, and phase o, with duration
2B rad/s, centred at wy rad/s.

Some interesting particular cases include:

1) The Gate function: 88%9: PCOS(W0,0,0,B)’
€2Bg

2) A Gate shifted by wy

OZY Y% 0 pcos(w0,0,w,, B):
e 2B ¢

3) Aninfinite cosine pulse:

cos(wt, +q,) = PCOS(w;t,,q,,0,B® +¥).
Denoting the inverse Fourier transform of PCOS by
peos(t; t,,0,, Wy, B):= At PCOS(w;t,,q,, W,, B).
the following result can be proved.

Proposition 1. Given ty, go,Wp and B parameters of a
PCOS, the inverse spectrum pcosis given by:

peos(t; ty,do, Wy, B) =

%{ej(wonwotomo) Sa[B(t +t0)] + @ (Wot- woto-do) .Sa[B(t - to)]}
(6)

Proof. Follows applying the convolution property for

the following couple of transform pairs:

1[d(t+to>e“*° +d(t- t)e ™ |« cosw, +q,) and

et gy (Bt)« anN L;,No 0
e 9

It isinteresting to check some particular cases:
pcos(w;0,0,0,B) «  PCOS(w;0,0,0,B) U

B X BW

—.SaBt) « -

) (B1)« Ogyp=

pcod(t; t,,00,B® +¥)« PCOS(w;t,,00,B® +¥)
0] %[d(t+to)+d(t— t,)] « cos(wt,), which follows
from the property of the sequence

lim
(7)
- ( )=d(t)-

Property 1. (Time shift): A shift T in time is
equivalent to the following change of parameters:
peos(t - T;ty,do, Wy, B) = peos(t; ty - T,do, Wy, B)-
a

In order to find out the scaling function of the new
orthogonal MRA introduced in this section, let us take
theinverse Fourier transform of F (w).

The spectrum F(w) can be rewritten as a sum of
contributions from three different sections (a centra
flat section and two cosine-shaped ends):



& W po
F(w) =
JpF W) = Oe2p ZB (8)
-po
wt, + k2
cos(- qo)Og 5 4
with  parameters B:=pa, t, = i and
4a
1-a
0o = - ( 4a)IO )
It follows from Definition 1 that
V2pF (w) = PCOS(W;0,0,0,2p - 2B)+
e 1 (-a)p 0 e 1 (-a)p
PCOSgW’4a , ™ p.pa {a+ PCOSg W, - ,p.pa
and therefore
J2pf @) = pcos(t'0002p - 2B)+
pcosa? 4:)p pa 9 pcosg t; 42 (1_4:)p ,p,pag

After a somewhat tedious algebraic manipulation, we
derive

F(*0) (1) =\/% (1-a)Snc[(1- a)t] +

\/% ? 1 (jat)z {cosp(1+a t+4atsinp(1- a )t}.
©)

A sketch of the above MRA scaling function is shown
in figure 4, assuming afew roll-off values.
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Figure 4. "de Oliveira" Scaling Function for an
Orthogonal MRA (a=0.1, 0.2 and 1/3).

The scaling function f () (t) can be expressed in a

more elegant and compact representation with the help
of the following specia functions:

Definition 2. (Special functions); n is a real number,
H, (t) :=nSnc(nt), 0En£L, and
1 2|n1 -n, |

m(t):==

; m{cospnlt +2(n,
1 2

a
It follows that

V2pf 9 (1) = H, (1),
Jopf ®(1) =H,, (t) + M2 (t).

- n, )tsinpn,t}

limf () =f 9 (t).
a®0

The low-pass H(.) filter of the MRA can be found by
using the so-called two-scale relationship for the
scaling function [7]:

Fw)=—

Clearly,

HC==F =+ (10)
\/_ 82@ 82{5

How should H be chosen to make egn(10) hold?
Initially, let us sketch the spectrum of F (w) and F (w/2)
as shown in figure 5.

The main idea is to not allow overlapping between the
roll-off portions of these spectra Imposing that
2p(1- a)>(1+a)p, it follows that a<1/3 (remember that
O<a<l). This is a simplifying hypothesis. It is quite
usual the use of small roll-off factors in Digital
Communication Systems.

F(w)

1 e

(1-a)p (+a)p

-(+a)p -(1-a)p
F (W/2)

1 b

(1-a)2p (1+a)2p

- (1+a)2p
Figure5. Draft of F (w) and F (w/2).
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It is suggested to assume that HES= 2 F(w).
09 . o (w)

Substituting this transfer function into the refinement

equation (eqn(10)), resultsin

F(w) =
W= 5
The above eguation is actually an |dent|ty for |w| >
(1+a)p. Into the region |w| < (1+a)p, it can be seen
that ,:?;" ; \/2p » under the constraint a<1/3.
The orthogonal "de Oliveira" wavelet can be found by
the following procedure [7]:

- l *w\/
Y(w=eM? —_H¢=-p= F —
2P
Inserting the shape of the filter H in the above equation,
it follows that:

Y (W) = ™2

WS CE)

(12)

1 avo
—F(w- 2p)Fc—=.
v 2p (W ) 3221

In order to evaluate the spectrum of the mother
wavelet, we plot both F(w- 2p) and Fg , again

(13)

under the constraint a<1/3 (Fig. 6). In th|s case,
(1+a)p<(1- a)2p and (1+a)2p<(1- a/3)3p.



Defining a shaping pulse
-1 3BV o (19
S (wy) = Fw-2p)Fe==
W= I,
the wavelet specified by egn(12) can be rewritten as
Y ) (w) = g "/25(%0) (W), The term 72 accounts
for the wave, while the term S(w) accounts for let.

F(w/2)
T T
a)
| | |
-(1+a)2p - (1-a)2p (ra)2p (+a)2p "
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Figure 6. Sketch of the scaling function spectrum:

(a) scaled version gaLVQ (b) translated version F (w- 2p)
€2¢
(c) simultaneous plot of (a) and (b).

From the figure 6, it follows by inspection that:

i0 if w<p(l-a)

.:.F(W- 2p) if p(l-a)Ew<p(l+a)
S(deo)(w):i‘l,i %33 if p(l1+a)Ew<2p(1-a)

:FEG"JQ if 2p(1-a)Ew<2Zp(l+a)

i 620

fo if w3 2p(l+a).

(15)
Inserting the (square root) raised cosine format of F(.),
resultsin:

(16)
The complex "de Oliveira" wavelet is given by
Y @ (w) = "25® () and its  modulo
| Y @) (w) |= 5*)(w) is depicted in figure 7. Observe

i 0 if w<p(l-a)
':'%mcos%(w— p@+a)) if p(l-a)Ew<p(l+a)
:
T 1 .
SO )= = if p(l+a)Ew<2p(l-a)
: 1 » 1
P ——cos=(w- 2p(1- a)) if 2p(1-a)Ew<2p(l+a)
Ty &
1 » 0 if w3 2p(1+a).

furthermore that making a® 0, the wavelet reduces to
the complex Shannon wavelet.

It is quite apparent from figure 7 the band-pass
behaviour of the wavelet Y *(w). Observe that the
left and right roll-off is not exactly symmetrical.
Instead, despite their similar shape, they occur at
different scales, atypica behaviour of wavelets.

SO (w)
i B T T | T ]
Vp
1 1 1 1 -
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B \ e le—u:uﬂ"=la’3_

Figure 7. Modulo of the "de Oliveira" Wavelet
(frequency domain).

The time domain representation of the wavelet can be
derived by taking the inverse Fourier transform:

y “ (1) = Ay O (w).
Denoting by s®(t) « S (w) the corresponding

transform pair, it follows that y (@) (1) = (@) (¢ }) .

The shaping pulse can be rewritten as:

1 p(1+a)’p’pa<5

V20 S (w) = PCOSTW, —, 9
2p (W) Sg a @

20021 4P ;) &, 1 2d-a) 0
PCOS(éV\r,0,0, 2(1 3),2(1 a)b+ Pcosgw,&i, = ,a),2pa[.a
Finally, applying theinverse transform, we have

(d0) (4 — 1 } p(l+a) 0 17
V2p s (1) pcosg?,“a, S PPt (17)

00X (1. A P30 1 _@-a) 0
pcosg?,o,o, 5 @ 3), 2(l 3a)b+ pcosg?,sa, & ,2p,2pa'.a
The pcos(.) signal is a complex signal when there are
no symmetries in PCOY(.). The real and imaginary

parts of the pcos function can be handled separately,
according to

pcos(t;t,,0,, Wy, B) = rpcos(t) + j.ipcost), where
rpcodt):= Ae( peos(t; t,,q,, W, B)) and
ipcosit):= Am(pcos(t;t,,q,, W,, B))-



Aiming to investigate the wavelet behaviour, we
propose to separate the Real and Imaginary parts of
s%O)t), introducing new functions rpc(.) and ipc(.)
Aey @ (1) = Ael st~ DY Amly © (1) = Aml s ¢ - D)
| 2 k/) | 2 E
(18)
Proposition 2. Let Dpw™:=w,+B and
DW= w, - B; Dg Y := Bt, +wt, +q, and
Dq Y = Bt, - wyt, - q, be auxiliary parameters. Then

- t,. & senDq® cosDwt +t. § (i)cosDg® sen Dwt

1 iT{-1,+ il {-1,+
rpc(t)zg T{-1,+3 tz-tgl(lu

Ll & senDg © sen DVt o 3 (-i)cosDq® cosDwt
ipC(t)zf iT{-1,+1 _ |£(-1,+1)

2 -1

a

Proof. Follows from trigonometry identities.
At this  point, an aternative  notation
rpc(t) = rpc(t; Dw™ , Dwt?,Dg P, Dg ¥ ) and
ipc(t) = ipc(t; Dw™? Dwt?,Dg “?, Dq ('1)) can be

introduced to explicit the dependence on these new
parameters. Handling apart the real and imaginary parts
of @) (t), wearrive at

@Ae(s(deo)(t)): rpcg?;p(1+a),p(l- a),O,%9+
é 2

rpcfi2p (- 2)p (1+2).00)+ rpelizp (L+a) 2p (1- ). 5 0
e 2
(19)
Applying now proposition 2, after many agebraic
manipulations:
V2pAes® (1)) =
1 -a +a
= a0 O Hey O+ ME O +MED OO}
(20)
and Aey @ (t)) = Aels ™t - 1/2)).

The analysis of the imaginary part can be done in a
similar way.

Definition 3. (specia functions); n is a real number,
— cos(hpt

H, (t):=n ﬂ , OEn£l, and

npt
M:;(t)zl 2|nl-n2| -
p 1- [2t(n,- n,)]

a
The imaginary part of the wavelet can be found by

Vop. Am(s(“eo’ (t)) =
1f _ _ i
= {0 ©- Hoty O+ M O +MES 0}
(21)
and Amly @ (1)) = Am(s“*(t - 1/2))-

The real part (as well as the imaginary part) of the
complex wavelet y (“O)(t) are plotted in figure 8, for

a=0.1, 0.2 and 1/3.

{si npn.t- 2(n, - nz)t.cospnzt}
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-10 =5 0
(b)
Figure8. Wavelety *9(t):
(a) real part and (b) imaginary part.

4. FURTHER GENERALISATIONS

Generally, the approach presented in the last section is
not restricted to raised cosine filters.

Algorithm of MRA Construction. Let P(w) be a real
band-limited function, P(w)=0 w>2p, which satisfies
the vestigial side band symmetry condition, i.e.,

{Pew+ Pw- )= for [wi<p
Then the scaling function F(w)=./P(w) defines an
orthogonal MRA. O

Proposition 3. If P(w;a) is a Nyquist filter of roll-off
a, and |(a) is an arbitrary probability density
function, O<a<l, then the scaling function

F(w) = \/é (@)P(w;a)da defines an orthogonal

MRA.

Proof. It is enough to show that § F (w+ 2pn) P= 1.
nl z ZJ

integer n, then

Given an
F (w+ 2pn) :Jé (@)P(w+2pn;a)da - Taking the

5



square of both members and adding equations for each
integer n,
8 F (w+2pn) = ¢ ()& P(w+2pn;a)da -
ni z ni z
Since P(w;a) isaNyquist filter,
& P(w+2pna) = 1 andthe proof follows. O
iy

nl z

The most interesting case of such generalisation
corresponds to a "weighting” of square-root-raise-
cosine filter.

Corollary. (Generalised raised-cosine MRA). If
P(w;a) is the raised cosine spectrum with a

(continuous) roll-off parameter a, i.e.,
F)  ogwk(@-a)p
0 WP @+a)p .

and | (a) is an arbitrary probability density function
defined over the interval O<a<1, the scaling function

F(w) = () @)P(wa)da

MRA. O

defines an orthogonal

5. CONCLUSIONS

This paper introduced a new family of complex
orthogonal wavelets, which was derived from the
classical Nyquist criterion for 1Sl elimination in Digital
Communication Systems. Properties of both the scaling
function and the mother wavelet were investigated.
This wavelet family can be used to perform an
orthogonal Multiresolution Analysis. A new function
termed PCOS was introduced, which is offered as a
powerful tool in matters that concern raised cosines. An
algorithm for the construction of MRA based on
vestigid side band filters was presented. A
generalisation of the (square root) raised cosine wavelet
was also proposed yielding a broad class of orthogonal
wavelets and MRA.

(|w|-p(1—a))§ - a)p £wik @+a)p
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