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Abstract— Evaluation of the quality of tracheoesophageal
(TE) speech using machines instead of human experts can
enhance the voice rehabilitation process for patients who have
undergone total laryngectomy and voice restoration. Towards
the goal of devising a reference-free TE speech quality esti-
mation algorithm, we investigate the efficacy of speech signal
features that are used in standard telephone-speech quality as-
sessment algorithms, in conjunction with a recently introduced
speech modulation spectrum measure. Tests performed on two
TE speech databases demonstrate that the modulation spectral
measure and a subset of features in the standard ITU-T P.563
algorithm estimate TE speech quality with better correlation
(up to 0.9) than previously proposed features.

I. I NTRODUCTION

A variety of disease and medical complications can create
abnormalities in voice quality. One particular voice abnor-
mality is produced by total laryngectomy (the removal of
the larynx), most frequently as the result of cancer. In
this situation, several different methods to restore speech
production are possible. No matter which “alaryngeal” voice
mode is used, they all share one common element: reduction
in voice quality and capacity, and consequently a need to
evaluate the quality of a patient’s voice during rehabilitation.
The current benchmark for evaluation of voice quality is by
subjective quality scores where a panel of listeners evaluate
speech samples based on a set of pre-identified criteria
(e.g. hoarseness, breathiness, roughness). However, due to
the common necessity of expert evaluators for such an
evaluation, this method is expensive in both labor and time.
These costs severely limit the capacity to undertake these
evaluations. A machine-basedobjective scoring system to
evaluate the speech signal on subjective scales would greatly
assist the rehabilitation process.

The voice restoration method that produces the greatest
similarity to normal voice condition in frequency, intensity,
and temporal domains is tracheoesophageal (TE) speech. A
surgical puncture is made in the common anatomic wall
between the trachea and esophagus and a one-way valve
is inserted. The valve allows air to flow from the trachea
into the esophagus, and induces vibrations in the upper
esophagus/lower pharynx (the pharyngoesophageal segment)
to produce voice/speech [1]. While TE speakers in some
respects are able to approximate normal speech patterns, TE
speech is characterized as highly aperiodic, rough, and noisy
[2]. TE speakers are also restricted to a pitch range of 50-90

Hz for both genders in comparison to a normal pitch range
of 50-400 Hz.

In this paper we pursue a machine-learning approach
to objective quality assessment of TE speech. With this
approach, the features extracted from the speech signal have
a direct impact on performance. Speech quality estimation
algorithms can be grouped into two categories:reference-
based and reference-free. “Reference” refers to an input,
distinct from the test signal, to the quality estimation algo-
rithm to serve as a baseline (usually of “good” quality) for
comparison. Reference-based algorithms rely on this refer-
ence in order to provide an estimate of speech signal quality.
Reference-free algorithms, in turn, are not comparison based
and the estimated speech quality score is dependent solely
on features extracted from the test signal. Due to differences
in evaluation strategy, reference-based and reference-free
algorithms have distinct feature requirements. Prior workhas
been conducted utilizing both reference-based and reference-
free methods [3][4][5][6].

Investigation into reference-based evaluation methods have
utilized features from linear prediction analysis and auditory
models [3], where a “good” quality speech signal produced
by a separate speaker was used as a reference. The reference
speech sample must be carefully selected in order to balance
out various nuances and speech characteristics to ensure
accurate evaluation. In addition, dynamic time warping is
required to properly align the reference and test speech
signals. In [4] an automatic speech recognizer was applied
alongside additional prosodic features to predict subjective
scores. The reference in this methodology is the transcriptof
the spoken speech, needed to calculate the speech recognition
rate (SRR). While this method produced high correlation
on the tested database, speech recognizer performance is
problematic on atypical speech. Moreover, while SRR is
strongly correlated with the “intelligibility” of speech,the
“naturalness” of speech may not be reflected in the SRR.
Although voice restoration is primary for those who lose
their normal voice production, efforts that seek to facilitate
the production of natural sounding speech is an important
goal for rehabilitation of all alaryngeal speakers, but is of
particular importance for those who use TE speech.

Reference-free TE speech evaluation using features ex-
tracted by time-frequency analysis has been investigated in
[5]. However, the time-frequency features showed poor cor-



relation with TE speech subjective scores. Prosodic features
were investigated in [6] and demonstrated promising results.
These features, however, were only examined on sustained
phonemes from TE speakers and may not correlate well with
the overall speech quality of the speaker.

In this paper we investigate the use of existing objective
quality measurement algorithms - originally developed for
narrowband telephone speech - for TE speech quality es-
timation. In particular, we explore using the International
Telecommunication Union ITU-T recommendation P.563 al-
gorithm [7] and American National Standard Institute ANSI
ANIQUE+ algorithm [8]. P.563 inputs a narrowband test
speech signal and outputs an estimate of the subjective mean
opinion score (MOS) of the signal. Features extracted from
the test signal have been shown to accurately distinguish
between good and poor quality of narrowband telephone
speech [9]. These features and the estimated MOS serve as
a potential set of candidate features for use in TE speech
quality evaluation. To augment this candidate set we also
include the MOS estimated by the ANIQUE+ algorithm [8].
ANIQUE+ estimates the MOS based on a perceptual model
that mimics the human auditory system [8]. In contrast to
P.563, ANIQUE+ primarily relies on analysis of the test
speech signal’s modulation spectrum. The modulation spec-
trum captures the frequency content of a signal’s temporal
envelope. From the modulation spectrum we can extract
information on the slower temporal behavior exhibited by a
signal. An additional modulation spectral feature, the rever-
beration to signal modulation ratio (RSMR) [10], is also in-
cluded. This modulation spectral feature employs knowledge
of natural clean speech’s modulation spectral characteristics
to create a reference-free comparison between TE and normal
speech. Specifically, temporal variation at typical syllabic
and phonemic rates of speech signals establishes a nominal
modulation spectral characteristic for discrimination between
normal and TE speech.

We propose the use of sequential forward feature selection
with support vector regression (SVR) in order to estimate
the TE speech subjective quality scores. The remainder of
this paper is organized as follows. Candidate features are
described in Section II, the feature selection algorithm is
described in Section III, and experimental results are reported
in Section IV. Lastly, conclusions are reported in Section V.

II. FEATURE EXTRACTION

In this section we outline previously proposed features for
TE speech quality assessment. The proposed RSMR feature
is then described.

A. Adaptive Time-Frequency Analysis

From time frequency analysis a set of four features are
extracted: the energy capture rate (ECR), frequency ratio,
Ocmean, and Ocmax. A full description of the features can
be found in [5].

B. Standardized Objective Quality Analysis

P.563 utilizes a total of 43 different features to produce an
estimate of the MOS, including features based on vocal tract,

noise, and continuity analysis. A full list of P.563 features
can be found in [7]. Together with the estimated MOS, P.563
contributes 44 candidate features. The estimated MOS from
ANIQUE+, a competitor to the ITU-T P.563 algorithm, adds
one additional feature to the candidate pool resulting in 45
features from standardized objective quality analysis.

C. RSMR

Introduced in Falk et al. [10], the reverberation-to-signal
modulation energy ratio (RSMR) is an adaptive feature
that exploits the modulation spectral characteristics of clean
speech to compare the modulation energy between the signal
and “room reverberation“. Typical clean speech contains
modulation frequencies approximately in the 2-20 Hz mod-
ulation frequency band with spectral peak at approximately
4 Hz [10]. From this clean speech characteristic we presume
that spectral content with modulation frequencies greater
than 20 Hz is due to “noise” embedded in the speech signal.
In the context of the original feature definition, this additional
noise is caused by room reverberation. For TE speech, these
additional modulation frequencies are due to artifacts (e.g.
gurgling, raspiness) present in the signal. We essentially
consider the RSMR feature as a artifact-to-signal modulation
energy ratio. We summarize below the process for extraction
of the RSMR feature.

To calculate the feature, the speech signal is initially
processed by a bank of 23 critical band gammatone filters.
Hilbert transform is performed at the output of each filter
j to calculate the temporal envelopeej (n). These temporal
envelopes are multiplied by 256 ms Hamming windows with
frame shift of 32 ms to calculate the temporal envelopes of
each frame,ej (m). The modulation spectrum is calculated
as Ej (m; f) = |F (ej (m))| where F denotes the DFT
operation andf indexes the modulation frequency bins.
These modulation frequencies are grouped intoK bands,
where the where the energy for framem is denoted by
Ej,k (m) , k = 1, . . . ,K. The mean of the modulation energy
for all Nact active frames is calculated to be:
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1
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Nact
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Eact
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The average modulation energy per modulation frequency
band is:
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The RSMR is then:

RSMR =

∑K∗

k=5 Ēk
∑4

k=1 Ēk

(3)

whereK∗ is adapted to the speech signal [10].

III. SEQUENTIAL FEATURE SELECTION

Given a setA of currently selected good features, a
candidate featureBi from a setB of candidate features
is added toA to form a candidate feature setCi. Cross



validation (CV) is performed using SVR to evaluate the
performance of the candidate feature setCi. The candidate
feature set that produces the best correlation between the
predicted scoreŝy = [ŷ1, ŷ2, . . . , ŷN ] and actual scores
y = [y1, y2, . . . , yN ] is added toA and deleted fromB

The algorithm can be summarized as follows:

1) Given initial feature setA and candidate feature set
B = [B1, B2, . . . , BM ],

2) For i = 1 : |B|, do
C = A ∪ {Bi},
Perform CV using SVR with feature setC and get
predicted scorêyi = [ŷi,1, ŷi,2, . . . , ŷi,N ],

3) Find j = argmax
i
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whereȳ

and ¯̂yi are the mean ofyk and ŷi,k, respectively.
4) A = A∪ {Bj}, B = B −{Bj}. Re-index the features

in B.
5) If termination criterion not met (i.e.|A| < L, (where

L ∈ Z is a limit on the size of feature setA) is not
true), return to step 2.

IV. EXPERIMENT

In this section, we describe the process of TE speech data
collection and the methodology for obtaining our results.

A. Data

Speech samples were collected from 28 adult males of
45-65 years in age that had undergone total laryngectomy
and TE puncture at least one year prior to the recording.
All recordings were gathered in a sound-treated environment
recorded at 44.1 kHz sampling rate with 16-bit quantization.
Each speaker read the sentenceThe rainbow is a division of
white light into many beautiful colors. Each speech file was
subjectively scored based on the severity of the speech by
24 naive listeners on a scale of 1-100, with a lower score
indicating less severe speech. The final subjective score for
each speech file was the mean subjective score from the 24
listeners. We aim to find TE speech signal features that are
effective for estimating the mean subjective score.

The speech signal was downsampled to 8 kHz before pro-
cessing by the P.563 and ANIQUE+ algorithms to produce
45 different features. The RSMR feature was extracted to
provide a total of 46 different features. All features were then
normalized to zero mean and unit variance; features with no
variation between speech files were removed to produce a
set of 40 candidate features for TE speech quality evaluation.
The removed features (e.g. robotization, multiplicative noise)
had preconditions that TE speech could not satisfy, causing
the P.563 algorithm to assign them default values for all TE
speech signals. The sequential feature selection algorithm
was executed on the 40 remaining features to select a
subset of features for SVR. Leave-one-out cross validation
(LOOCV) was performed to evaluate the SVR based on the
magnitude of the correlation between predicted and actual
subjective scores. Both a linear kernel and non-linear radial
basis function (RBF) kernel were utilized for SVR.

TABLE I

TIME-FREQUENCY ANALYSIS FEATURES

Feature Correlation
ECR 0.52

Frequency ratio 0.28
Ocmean 0.38
Ocmax 0.24

Fig. 1. Performance of SVR utilizing automatically selected features

B. Results

We first explore the correlations obtained between subjec-
tive TE speech scores and the features from time-frequency
analysis. Results are reported in Table 1. As can be seen,
the previously-proposed features show poor correlation with
subjective scores. The best performing feature, ECR, exhibits
a correlation of 0.52. Next, we examine the correlation
obtained between subjective TE scores and our proposed set
of 40 candidate features. Figure 1 shows the performance
of the SVR with sequentially selected features. As observed,
the best performance for linear SVR is obtained by utilizing
five features. The inclusion of additional features beyond five
features degrades performance due to overfitting. Non-linear
SVR achieves best performance with the top one or two
features. The inclusion of more than two features degrades
estimation performance due to overfitting.

The ranking of the features for both linear and non-linear
SVR are shown in Table II. Three of the five best features
for linear SVR are extracted from the P.563 background
noise analysis module: LocalBGNoise, LocalBGNoiseMean,
and EstBGNoise. The first two local background noise fea-
tures measure noise between phonemes. The LocalBGNoise
feature is the percentage of samples classified as local
background noise. The LocalBGNoiseMean is the mean
energy of frames containing local background noise. The
EstBGNoise feature is an estimate of the overall background

TABLE II

RANKING OF FEATURES

Rank
Feature

Linear kernel RBF Kernel
1 RSMR PitchCrossPower
2 LocalBGNoise UnnaturalBeeps
3 LocalBGNoiseMean FrameRepeatsTotEnergy
4 EstBGNoise FrameRepeats
5 VTPMaxTubeSection UnnaturalBeepsAffectedSamples



noise floor level in dBov (dB relative to overload). Low
quality TE speech signals often contain artifacts. With the
artifacts classified as noise, the presence of artifacts would
be reflected in the extracted noise features. The final P.563
feature within the best five is VTPMaxTubeSection, which
is a measure of the maximum glottis opening (for laryngeal
speakers in the P.563 context) over the entire test signal and
is used to evaluate the unnaturalness of the speech signal.

With the non-linear SVR, the best performance requires
only a single pitch related feature - the PitchCrossPower.
The PitchCrossPower is based on the cross power spectrum
between consecutive pitch synchronous frames. The cross
power spectrum is the Fourier transform of the cross cor-
relation between the consecutive pitch synchronous frames.
The impact of this feature on non-linear SVR performance
reaffirms the importance of pitch related features in TE
speech quality evaluation as reported in [6].

As a final comparison, we test the performance of our
algorithm utilizing the TE database described in [3] [5]. The
database described in [3] [5] (henceforth referred to as TE
database two), has a different subjective scoring scale. The
database described earlier in this paper rated the speakerson
the severity of the speech on a scale from 1-100 while in TE
database two the speakers are rated on “listener comfort” ona
scale of 1-10. A full description of the compared features can
be found in [3] and [5]. The performance of the linear and
non-linear SVR along with the two best performing features,
auditory model and ECR, from [3] and [5] respectively,
are shown in Table III. Note that the auditory model is a
reference-based evaluation since the D2 distance measure
requires a reference signal. We can see that both the linear
and the non-linear SVR outperform previous work conducted
on this database. The linear SVR used five features for its
best performance, and the non-linear SVR required three
features for its best performance. Feature rankings are shown
in Table IV. We also show the performance of the non-linear
SVR on the database when all five features listed in Table
IV are used. We can see that the overfitting due to the two
additional features degrades the non-linear SVR performance
to the same level as the auditory model.

On both databases the linear SVR requires five features
for its best performance. Much like on the first database,
background noise features play an important role as both
LocalBGNoiseLog and the EstBGNoise feature are present
in the best performing feature set. The non-linear SVR
required three features to obtain its best performance on
this database. CepCurt (kurtosis of the cepstral coefficients
obtained from vocal tract analysis) is a statistic that serves
as a measure of speech distortion. SpectralClarity measures
the absence of spectral energy at frequencies in between
the harmonic frequencies of voiced speech. SharpDeclines
measures unnatural drops in temporal energy of the speech
signal.

V. CONCLUSION

In this paper, we have assessed the efficacy of a set of
candidate features for SVR based reference-free TE speech

TABLE III

COMPARISON OF PERFORMANCE ON THETE DATABASE DESCRIBED IN

[3] [5].

Feature |Correlation|
ECR 0.63
Auditory Model (D2 distance measure) 0.73
5 feature linear SVR 0.86
3 feature non-linear SVR 0.77
5 feature non-linear SVR 0.73

TABLE IV

RANKING OF FEATURES ON THETE DATABASE DESCRIBED IN [3] [5]

Rank Feature
Linear kernel RBF Kernel

1 RSMR RSMR
2 LocalBGNoiseLog CepCurt
3 EstBGNoise EstBGNoise
4 SharpDeclines SNR
5 SpectralClarity SharpDeclines

quality estimation. Including a modulation spectral feature
(RSMR), the set of candidate features is extracted using
P.563 and ANIQUE+, two standard algorithms for reference-
free estimation of telephony speech quality. Test results for
two TE speech databases demonstrate that RSMR and a
subset of P.563 features estimate TE speech quality with bet-
ter correlation than previously proposed features. Additional
effort is under way to acquire more TE speech data in order
to improve the robustness of the selected features.
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