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Abstract— There is recent indication that Alzheimer’s dis-
ease (AD) can be characterized by atypical modulation of
electrophysiological brain activity caused by fibrillar amyloid
deposition in specific regions of the brain, such as those related
to cognition and memory. In this paper, we propose to objec-
tively characterize EEG sub-band modulation in an attempt to
develop an automated noninvasive AD diagnostics tool. First,
multi-channel full-band EEG signals are decomposed into five
well-known frequency sub-bands: delta, theta, alpha, beta, and
gamma. The temporal amplitude envelope of each sub-band
is then computed via a Hilbert transformation. The proposed
‘spectro-temporal modulation energy’ feature measures the rate
with which each sub-band is modulated. Modulation energy
features are computed for 19 referential EEG signals and seven
bipolar signals. Salient features are then selected and used to
train four different classifiers, namely, support vector machines,
logistic regression, classification and regression trees, and neural
networks. Experiments with a database of 34 participants,
22 of which have been clinically diagnosed with probable-
AD, show a neural network classifier achieving over 91%
accuracy, thus significantly outperforming a classifier trained
with conventional spectral-based features.

I. INTRODUCTION

Recent statistics have placed Alzheimer’s disease (AD)
as the sixth leading cause of death in the United States
and the third most expensive disease, after cardiovascular
disease and cancer [1], [2]. It is estimated that 60-80%
of dementia cases in North America are due to AD [1].
Commonly, AD results in memory loss and at least one
more cognitive impairment, often leaving individuals unable
to perform their daily activities. Early diagnosis is critical
in order to initiate treatment that can significantly retard
disease progression. Today, AD diagnosis may be done
via neuropsychological evaluations, with accuracies ranging
from 85-93% [3]. Definite diagnosis, however, can only be
established with a histopathological analysis of the brain in
which neurofibrillary tangles and neuritic plaques are found.

Since neuropsychological AD diagnosis demands long ex-
perimental sessions and experienced professionals, new non-
invasive automated approaches have been sought. Recently,
neuroimaging techniques, such as computerized tomography,
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magnetic resonance and positron emission tomography have
emerged as promising candidates. The high cost of obtain-
ing such equipment, however, has precluded its ubiquitous
presence in clinics, particularly in developing countries.
Moreover, recent research has suggested the limitations of
neuroimaging techniques in accurately detecting tangles and
plaques [4]. The use of quantitative electroencephalogram
(EEG), on the other hand, has shown to be a viable less-
costly alternative, with diagnostic accuracy inline with those
obtained with more expensive neuroimaging techniques [5].

Conventionally, EEG analysis for automated AD diagnos-
tics has fallen under two categories: spectral and nonlinear
dynamics analysis [6]. With spectral analysis, the consensus
is that EEG spectral power is reduced with AD in the
alpha (8-12 Hz) and beta (12-30 Hz) frequency bands,
and increased in the delta (0.1-4 Hz) and theta (4-8 Hz)
bands. Spectral coherence (a measure of brain connectivity),
in turn, has shown reduced values in AD when studying
interhemispheric interactions, and has also been shown to
be related to disease progression [6]. Nonlinear dynamics
analysis, on the other hand, measures the complexity or
chaoticity of the EEG signal. It has been shown that with AD,
EEG complexity is decreased, possibly due to the reduced
cortical interconnections resultant from the disease [6].

In this paper, we describe an alternate feature for EEG-
based diagnosis of Alzheimer’s disease, namely, spectro-
temporal modulation energy. The development of the feature,
which measures the rate of change of subband EEG mod-
ulations, was motivated by recent findings reported in the
literature for AD treatment. In [7], deep brain stimulation
was shown to remodulate brain activity in pathological areas
affected by amyloid deposition and provided several clini-
cal benefits, such as improvement or slowing of cognitive
decline. The proposed feature, which conveys quantitative
information of subband EEG modulation, is shown to be a
useful metric for automated AD diagnosis.

II. MATERIALS AND METHODS
A. Participants

Thirty four participants volunteered for the study and
provided written consent; ethics approval was obtained. Of
these 34 participants, 22 were diagnosed with AD (age:
71.5 ± 7.7, 17 female) and 12 were age-matched healthy
control (68.8 ± 6.7, 8 female). Alzheimer’s disease diagnosis
was made according to NINCDS-ADRDA [8] criteria and
classified as mild to moderate, according to DSM III-R
[9]. Participants had no history of other diseases and/or
deficiencies that could also lead to cognitive impairment.



B. EEG capture and pre-processing

Nineteen channel EEG recordings were obtained with
a Braintech 3.0 instrumentation (EMSA Equipamentos
Médicos Inc., Brazil), digitized with a 12-bit analog-to-
digital converter and sampled at a rate of 200 Hz. Data was
recorded with the participants awake and resting with their
eyes closed. Placement of scalp electrodes followed the inter-
national 10-20 system and biauricular referential electrodes
were used, resulting in 19 channels (referential montage),
namely, Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, T5, T6,
P3, P4, O1, O2, Cz, Fz, Pz. An infinite impulse response
low-pass elliptic filter with a zero at 60 Hz was applied to
eliminate any power grid interference. For each participant,
40 eight-second artefact-free epochs were selected, per EEG
channel, by an experienced physician.

An interhemispheric bipolar montage was also explored
as there is growing evidence of an interhemispheric dis-
connection in AD. An EEG bipolar signal was obtained by
subtracting the two bi-auricular referenced signals involved
[10]. The following bipolar channels were used in this study:
F3-F4, F7-F8, C3-C4, T3-T4, P3-P4, T5-T6, and O1-O2.

C. Spectro-temporal EEG amplitude modulation energy

As mentioned previously, there is growing evidence that
brain activity modulation is compromised with AD [7].
Here, we propose a novel feature for AD diagnosis which
quantitatively monitors EEG amplitude modulation. The fea-
ture is termed ‘EEG spectro-temporal modulation energy’;
Figure 1 depicts the signal processing steps involved in its
computation. First, the full-band EEG signal is decomposed
into five well-known sub-bands: delta (0.1-4 Hz), theta (4-
8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-
100 Hz). The temporal amplitude envelope of each sub-band
signal is then computed by means of a Hilbert transform
[11]. In order to quantify the rate of change of the sub-band
temporal envelopes, we further decompose the envelopes
into five so-called modulation bands and compute the energy
present in each modulation band.

The resultant spectro-temporal modulation representation
conveys rate-of-change information for each of the five sub-
band amplitude envelopes. In this study, the frequency range
of modulation bands are empirically set to coincide with
the frequency range of conventional bands. To distinguish
between the two, however, modulation bands are appended
by a prefix “m-” (e.g., m-delta, 0.1-4 Hz). In order to perform
automated AD diagnosis, 25 modulation energy features are
computed for each of the 19 EEG channels, as well as the
seven bipolar signals. The features represent the percentage
of the overall modulation energy present in each of the five
frequency and five modulation-frequency bands.

D. Salient feature selection and classifier design

A total of 650 modulation energy features (25 features ×
[19 channels + 7 bipolar signals]) were extracted per epoch,
per participant. In order to reduce such high-dimensional
feature space into one that is feasible for classifier design,
correlation-based feature selection using a genetic search
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Fig. 1. Signal processing steps comprised in the calculation of EEG spectro-
temporal modulation energy.

paradigm was used to select salient features and to prune
redundant ones. Of the 40 EEG epochs available for each par-
ticipant, 10 were set aside for feature selection; the remaining
30 were used for classifier training and testing (in leave-
one-out-patient tests). Once salient features were selected,
four classification algorithms were tested for automated AD
diagnosis. The Weka implementation [12] of support vector
classifier (SVC), logistic regression (LR), classification and
regression tree (CART), and neural network (NN) classifiers
were tested. To allow for a fair comparison between different
classifiers, default settings were used; further improvements
are warranted once parameter optimization is in place.

III. EXPERIMENTAL RESULTS

A. Feature selection

Table I shows the top 33 features (and their ranks) selected
in our experiment; this number of features is inline with
those previously reported in the literature (e.g., [13]). In
the table, features are represented as “Pos-Band-ModBand,”
where ‘Pos’ indicates the electrode position (e.g., O1) or the
bipolar signal (e.g., T5-T6), ‘Band’ indicates the frequency
band, and ‘ModBand’ the modulation band. As can be seen,
occipital region information achieved the two highest feature
ranks, with features encompassing both the referential and
bipolar montage assemblies (O1 and O1-O2, respectively).

B. Diagnostic performance

As mentioned previously, the available dataset consisted of
1360 8-second EEG epochs (40 epochs per participant, 34
participants). Of these, 340 (10 epochs per participant) were
used for feature selection and the remaining 1020 were left
for classifier design and testing. Here, a leave-one-patient-
out (LOPO) approach was used for classifier training/testing.



TABLE I
TOP 33 MODULATION ENERGY-BASED FEATURES SELECTED VIA CORRELATION-BASED FEATURE SELECTION USING A GENETIC SEARCH PARADIGM.

Feature Rank Feature Rank Feature Rank

O1−theta−m-beta 1 Fz−beta−m-theta 12 Fz−gamma−m-theta 23
O1-O2−theta−m-theta 2 O1-O2−gamma−m-alpha 13 P3-P4−theta−m-delta 24
C3-C4−beta−m-delta 3 T3-T4−alpha−m-delta 14 P4−theta−m-delta 25
P3-P4−beta−m-delta 4 C4−delta−m-alpha 15 T5-T6−beta−m-delta 26
F3-F4−theta−m-alpha 5 C4−delta−m-beta 16 T6−delta−m-beta 27

Fz−theta−m-alpha 6 P3−delta−m-theta 17 T6−beta−m-theta 28
T3-T4−alpha−m-alpha 7 Pz−beta−m-theta 18 C4−theta−m-alpha 29

F7−theta−m-delta 8 T3-T4−beta−m-alpha 19 C4−theta−m-beta 30
Fz−beta−m-delta 9 F3−theta−m-delta 20 F7−alpha−m-delta 31

T4−gamma−m-theta 10 F8−theta−m-delta 21 F8−beta−m-theta 32
F7−alpha−m-theta 11 F8−gamma−m-beta 22 Fz−delta−m-theta 33

LOPO is useful as it assesses the generalization ability of the
classifier as well as its diagnostic performance for “unseen”
patients. In each of the 34 runs of the train/test process, 990
of the epochs are kept for training and the remaining 30 are
left for testing. At each run, the test set consists of data from
a participant that is unseen to the classifier.

Three performance metrics were used, namely, overall ac-
curacy, sensitivity (percentage of correctly classified epochs
belonging to AD patients), and specificity (percentage of
correctly classified epochs belonging to healthy patients),
all expressed in percentage values. Tables II and III show
the performance obtained with the pre-selected modula-
tion energy features using referential, bipolar, or combined
referential-bipolar montage assemblies. Table II presents
results on a per-epoch basis while Table III presents classifier
performance on a more medically relevant “per-participant”
basis. In the per-participant case, a patient is deemed to be
correctly classified when 50% or more of its 30 epochs have
been correctly classified.

IV. DISCUSSION
A. Salient features

As can be seen from Table I, the electrode positions
selected most often (Fz, F7, F8) were associated with the
frontal region. These findings corroborate those reported
in [14], [15] where significant differences in brain activity
and EEG spectral power were reported in the midfrontal
and frontal lobes between AD and healthy control patient
groups. These findings suggest that with AD, not only is EEG
spectral power affected, but so is EEG power modulation.
The most significant feature, on the other hand, corresponded
to modulation information extracted from the left occipital
region, thus inline with results reported recently using EEG
complexity parameters [16]. Moreover, all bipolar signals,
with the exception of F7-F8 were selected.

Modulation information extracted from the theta and beta
frequency bands were selected most often, whereas the
opposite was observed with the alpha and gamma bands.
Interestingly, theta-beta coupling has been shown in the
past to be related to working memory performance [17]

and to affect and emotion regulation [18], two prominent
characteristics in AD. As for modulation bands, information
extracted from m-delta and m-theta bands were selected most
often and m-gamma information was completely discarded.
These findings suggest that slowly-varying EEG amplitude
modulations are the ones mostly affected by AD; these
findings may be useful to guide AD treatment interventions,
such as those described in [7].

B. Classifier performance

As observed from Tables II and III, the four classifiers ob-
tained similar performances, with neural networks achieving
somewhat better results across the three performance metrics
and support vector classifiers achieving better sensitivity
levels. In the per-participant case, neural networks with
a combined referential-bipolar montage assembly achieved
over 90% performance on all three performance metrics. The
results reported here with the proposed modulation energy-
based features compare favorably against results reported on
the same dataset using conventional spectral-based measures.
As an example, 81.2%, 82.5%, and 80.2% were reported
in [19] for diagnostic accuracy, sensitivity, and specificity,
respectively, using spectral peak and coherence as features
and support vector machines as classifiers. Lastly, it was also
observed that high accuracy and sensitivity levels could be
obtained with the bipolar signals alone. Since the bipolar
montage measures EEG regional potentials [10], an inter-
hemispheric disconnect may indeed be present with AD.

C. Limitations and ongoing investigations

Findings reported here were based on a limited gender-
unbalanced sample size of 34 participants; a larger partici-
pant pool is needed in order to explore if modulation energy
features are reliable for AD diagnosis as well as to monitor
disease progression. Moreover, the artefact-free EEG epochs
used here were selected by an experienced physician. In
order to make the diagnostic system completely automated,
artefact removal should be achieved by means independent
component analysis (ICA) [20]; this is the focus of our



TABLE II
PERFORMANCE OF PROPOSED FEATURES USING THE REFERENTIAL, BIPOLAR, AND COMBINED REFERENTIAL-BIPOLAR FEATURE SUBSETS.
PERFORMANCE IS REPORTED ON A PER-EPOCH BASIS AND REPRESENTS THE (MEAN ± STANDARD DEVIATION) OVER ALL PARTICIPANTS.

Classifier Referential (%) Bipolar (%) Combined (%)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

SVC 78.9± 36.2 87.3± 28.4 63.6± 44.7 81.3± 27.3 89.1± 18.6 67.2± 35.2 85.9± 30.6 93.6± 21.7 71.9± 39.6
LR 78.3± 25.7 82.7± 23.3 70.2± 28.8 82.6± 29.5 87.2± 26.4 74.1± 33.9 79.4± 27.5 78.6± 28.6 80.8± 26.6

CART 71.2± 34.2 78.4± 30.2 58.1± 38.3 78.0± 27.3 83.4± 23.8 68.1± 31.5 71.2± 36.9 77.7± 32.6 59.4± 42.8
NN 82.9± 28.2 86.9± 23.7 75.5± 34.9 82.3± 26.5 87.7± 16.2 72.5± 38.1 87.1± 24.9 88.3± 25.1 85.0± 25.4

TABLE III
PERFORMANCE OF PROPOSED FEATURES USING THE REFERENTIAL, BIPOLAR, AND COMBINED REFERENTIAL-BIPOLAR FEATURE SUBSETS.

PERFORMANCE IS REPORTED ON A PER-PARTICIPANT BASIS.

Classifier Referential (%) Bipolar (%) Combined (%)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

SVC 79.41 86.36 66.67 82.35 95.45 58.33 88.24 95.45 75.00
LR 85.29 90.91 75.00 85.29 90.91 75.00 82.35 81.82 83.33

CART 70.59 77.27 58.33 79.41 81.82 75.00 67.65 72.73 58.33
NN 82.35 86.36 75.00 91.18 95.45 83.33 91.18 90.91 91.67

ongoing work. Future works also shall consider comparisons
with linear and nonlinear measures.

V. CONCLUSIONS

In this paper, a new feature for automated EEG-based
Alzheimer disease (AD) diagnosis is proposed. The feature,
termed “spectro-temporal modulation energy,” measures the
rate with which EEG sub-band signals are modulated. Exper-
iments with a multi-channel EEG database measured from 34
participants (12 control, 22 probable-AD) show that a neural
network classifier, trained on salient features extracted from
different brain regions, can achieve significantly higher diag-
nostic accuracy relative to classifiers trained on conventional
spectral-based features (i.e., spectral peaks and coherence).
The automated tool has the potential to assist physicians in
AD diagnosis, evaluation of treatment outcomes, as well as
in providing a means to dispense with time-consuming and
resource-intensive neuropsychological assessments.
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