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Abstract — This paper develops a methodol-
ogy to find Kth-order Markov models that de-
scribe the successes and the failures of the trans-
mission of a modulated signal over a time corre-
lated flat fading channel. The order of the Markov
model that generates accurate analytical models
is estimated for a broad range of fading environ-
ments. Fading rates are identified in which the
Kth-order Markov model and the Gilbert-Elliott
channel model approximate the fading channel
with similar accuracy.

I. INTRODUCTION

This paper concerns the development of finite state chan-
nel (FSC) models for a discrete communication system
composed by an FSK modulator, a time correlated Rician
flat fading channel, and a hard quantized non-coherent
demodulator. This discrete fading channel model is
called the discrete channel with Clarke’s autocorrelation
(DCCA) model. The FSC model describes the successes
and the failures of the symbol transmitted over the fading
channel, which is represented mathematically as a binary
error sequence.

The main contribution of this paper is to develop a
methodology to find accurate Kth-order Markov models
for the DCCA model. Markov models with observable
states provide simple parameterization and closed-form
expressions for some model parameters, e.g. Shannon ca-
pacity, are available in the literature. We have applied
several statistics to judge model accuracy and to estimate
its order. The effect of the signal to noise ratio, fading
rate and Rician factor on the accuracy of the proposed
models is analyzed. As the fading rate becomes slower,
the model may grow to inconvenient sizes. Our second
contribution is to identify the system parameters in which
the well known two state Gilbert-Elliott channel (GEC)
model satisfactorily approximates the DCCA model. The
results presented here allow us to accurately study cod-
ing performance on correlated fading channels using the
analytical techniques developed to analyze burst channels
represented as FSC models [1]-[3].
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II. THE CHANNEL MODEL
The probability of an error sequence of length n, e, =
eies...en, of the DCCA model may be expressed as [4]
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where C is the normalized n x n covariance matrix (the
(3, j)th entry of C is Jo(27 fp (i — 5)T), where Jo(x) is the
zeroth-order Bessel function of the first kind, fp is the
maximum Doppler frequency, T is the symbol interval), F
is a diagonal matrix defined as F = diag(#, .
E,/Ny is the signal to noise ratio, Kr = °/20; is the
Rician factor, 1 is a column vector of ones, and the super-
script []T indicates the transpose of a matrix. Hereafter,
we consider binary modulation so the DCCA model has
three parameters Kr, fpT, and Es/No.

A stationary, N-state, FSC model is specified by two
N x N matrices P(0) and P(1), where the (7, j)th entry of
the matrix P(ex), ex € {0, 1}, is the probability a Markov
chain transitions from state Sp—1 = i to Sy = j and
generates an output (error) symbol ey, that is, P(S; =
Jj | Sk =i)P(er | St = j). The stationary distribution
is denoted by II. The probability of an error sequence
generated by an FSC model has a matrix form given by

P(e,) = mI* (HP@@) 1. (2)
k=1

We consider two classes of FSC models: Kth-order
Markov models and the GEC model. Following the ideas
introduced in [4], the parameters of each FSC model will
be expressed as functions of the probabilities of binary se-
quences. Then, we apply (1) to estimate these probabili-
ties and to parameterize FSC models that approximates
the DCCA correlated fading model.

The Kth-order Markov model can be represented as a
function of a first-order Markov chain [5]. Each state of
the Kth-order model is represented by a binary string
of length K. Given two states u = wjus---urx and
v =v1v2 - VK, we say that u and v overlap progressively
if upus - --uxg = vive ---vK—_1. If w and v overlap progres-
sively, then, there is a transition from w to v with prob-
ability P(uivivs -+ - vi)/P(u). Otherwise, the state tran-
sition probability is zero. Given a state v = vivz - - - vk,
P(er | v) = vk.
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The GEC is a two-state FSC model composed of state
0, which produces errors with small probability, namely
g, and state 1, where errors occur with higher probabil-
ity, namely b. The transition probabilities of the Markov
chain are po,1 S Q@ and pi1,0 S g. The matrices P(0) and
P(1) for the GEC model are given by

[ A-QO-9) Q(-b
P(O)—{ ¢(1-g) (1—q)(1—b>] ®)
_ | -0y Qb
P(l)_{ a9 (1—q)b]' @

III. MODEL EVALUATION

This section evaluates the accuracy in which the FSC
models described in the previous section approximate the
DCCA correlated fading model. Motivated by the re-
sults presented in [6], we compare next the autocorrela-
tion function (ACF) of the DCCA model with the ACF
of FSC models. A closed-form expression for the ACF of
the DCCA model is given by

LT

(1 +KR)2 e 2+2KR+(p(m)+1)T8
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(2 +2Kr + f,g) - (p(m)f,g)

where p(m) = Jo(2emfpT).

The ACF over twenty values of m of the DCCA and
the FSC models are compared in Fig. 1. The param-
eters of the DCCA model are Kr = 0, E;/No = 15
dB, fpT = 0.05 (a), fpT = 0.02 (b). Markov models
of order up to 6 have been considered. We observe from
Fig. 1(a) that the second-order Markov is satisfactory for
fpT = 0.05. However, we notice that the ACF of the
third-order Markov model is a bit closer to that of the
DCCA model, but this strictness may not compensate the
doubling of the number of states (we will use other statis-
tics later to confirm this assumption). This tradeoff be-
tween accuracy and complexity makes this decision some-
what arbitrary. The ACF’s of the third-order Markov and
the GEC models are very similar. When fpT < 0.04, the
ACF of the GEC model diverges from the ACF of the
DCCA model. This fact is illustrated in Fig. 1(b), where
the curve of the fifth-order Markov model approximates
better the ACF of the DCCA model than that of the
GEC model. Markov models may not be practical for
very slowly fading channels (fpT < 0.01) since the num-
ber of states grows exponentially with K and large data
sizes are necessary to parameterize the model. A similar
comparison has been done for E; /Ny = 25 dB. It was ob-
served that the ACF of the DCCA model decreases more
rapidly with m indicating a potential to reduce the order
of the Markov approximation. It was also observed that
the GEC model becomes accurate for a wider range of
fpT when the signal to noise ratio increases.

We also took into consideration the variational dis-
tance between the n-dimensional target measure P(e;)
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Figure 1: Comparison of the ACFs of the
DCCA model, the Kth-order Markov model (K =
0,1,---,6), and the GEC model. K =0, Es/Noy =
15 dB, and fpT = 0.05 (a), fpT = 0.02 (b).
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Figure 2: Variational distance versus the order K
having fpT as a parameter. Rayleigh fading (Kg =
0), Es/No =15 dB (a).



Table 1: Order of the Markov model that approxi-
mates the DCCA Rayleigh fading model for several
values of fpT. Es/Ny =10 dB, 15 dB, 25 dB.

foT
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given by (1) and the measure obtained by the Kth-
order Markov model, namely, P*)(e,), which is calcu-
lated using (2). The variational distance is defined as
> ., |P(en) — PY)(e,)|. Fig. 2 reports the variational
distance versus the order K for several values of fpT,
for E;/No = 15 dB. Because of the complexity in obtain-
ing the 2™ possible values of P(e,), we have considered
n = 10. A smaller distance value indicates that the Kth-
order Markov model agrees better with the DCCA model.
We say that the order of the Markov chain is Ko, when
the distance converges to approximately a constant value
for K > Ko. The orders indicated by the convergence of
the variational distance, for the range of fading environ-
ments investigated, are consistent with those obtained by
the ACF method. Table 1 summarizes the choice of Ky
deducted from the curves for selected values of fpT (the
curves used to estimate Ko for Es/No = 10 dB were not
shown for brevity). For the range of signal to noise ra-
tio considered, a memoryless model results for fast fading
(fpT > 0.3), while a first-order Markov model is ade-
quate for fpT =0.1.

IV. RiciaAN FADING

The analysis presented in the previous section is now em-
ployed to the DCCA model with Rician fading. ACF
curves are plotted in Fig. 3 for Rician fading with Kr =5
dB, E;/No = 15 dB, fpT = 0.05 (a), fpT = 0.02 (b).
For small values of m (m < 8 in Fig. 3(a) and m < 19
in Fig. 3(b)) the ACF of the DCCA model has a mono-
tonic decreasing exponential behavior that is well approx-
imated by that of FSC models. However, a good fitting is
not possible at the oscillatory portion of the AFC curve.
A comparison of Fig. 3 with Fig. 1(a),(b), reveals that the
Markov models provide a better fit for Rayleigh fading
when E;/No = 15 dB. On the other hand, Fig. 4 shows
that for Es/No = 25 dB the differences between the ACF
of the DCCA and the Markov models are greatly reduced.
We observe from Fig. 4 that the GEC model is accurate
for fpT = 0.02.

The estimated orders of the Markov model Ky ob-
tained from the ACF curves and the convergence of the
variational distance are shown in Table 2. The values of
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Figure 3: Comparison of the ACFs of the DCCA
fading model, the Kth-order Markov model (K =
0,1,---,6), and the GEC model. Kgr = 5 dB,
E,/No =15 dB, fpT = 0.05 (a), fpT = 0.02 (b).

Ky in Table 2 are greater than their correspondings in
Table 1. This can be explained by the fact that the mis-
match of the ACF curves for Rician fading reflects in the
convergence rate of the variational distance. It is worth
mentioning that the Markov models indicated in Table 2
for E;/No < 15 dB reach good approximation at the first
portion of the ACF curve (small m).

V. EQUIVALENCE BETWEEN DCCA AND GEC
MODELS

Tables 1 and 2 indicate that the number of states of the
Markov models may grow to an inconvenient size for slow
fading. It is therefore of interest to evaluate the effec-
tiveness of the GEC model for a wide range of fading
parameters. Table 3 classifies the minimum value of fpT
in which the GEC model is approximately statistically
equivalent to the DCCA model. Fig. 1(b), 4(b) verify
the accuraccy of the GEC model at the lower bound to
fpT shown in Table 3. We found that the GEC model is
not adequate when E,/Ny < 15 dB. Although the GEC
model is suitable for fast fading, the zeroth-order and the
first-order Markov models are simpler to analyze. This is
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Figure 4: Comparison of the ACFs of the DCCA
fading model, the Kth-order Markov model (K =
0,1,---,6), and the GEC model. Kr = 5 dB,
Es/No =25 dB, fpT = 0.02.

Table 2: Order of the Markov model that approx-
imates the DCCA Rician fading model for several
values of fpT. Kr =5 dB. E;/No = 10 dB, 15 dB,
25 dB.

70T | Ko (10 dB) | K, (15 dB) | Ko (25 dB)
0.1 3 2 2

0.05 5 4 2

0.04 6 5 3

0.03 >6 6 4

0.02 >6 >6 5

0.01 > 7 > 6 > 6

the reason of the upper bound fp7T = 0.1 in Table 3.
This table shows, for example, that for Rayleigh fad-
ing, Es/No = 25 dB, fpT = 0.01, the GEC model may
be an interesting alternative with respect to the 32-state
Markov model indicated in Table 1.

To investigate this equivalence further we will compare
the capacity of FSC models. The capacity of the Markov
models has closed-form solution, while the capacity of the
GEC model was calculated using the algorithm published
by Mushkin and Bar-David [7]. In Fig. 5 the capacities
are plotted versus the Markov order K, for Es/No = 15
dB. The flat curves correspond to the capacities of the
GEC models. For each fpT, the capacity of the Markov
models increases with K and converges to the capacity
of the DCCA model. The estimated values of Ky in-
dicated by the convergence of the capacity curves agree
with those shown in Tables 1 and 2. A crossover between
the capacity curves reveals the value of K where the Kth-
order Markov model and the GEC model have similar a
capacities.

Table 3: Range of fading parameters where the GEC
model is equivalent to the DCCA model.

E;/No Rayleigh Rice (Kr =5 dB)
15dB | 0.05< foT < 0.1 n
25dB | 0.01< fpT < 0.1 | 0.02< fpT < 0.1
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Figure 5: Capacity versus the order K having fpT
as a parameter, for Es/Ny = 15 dB. Rayleigh fading
(Kr=0). fpT = 0.1, 0.05, 0.03, 0.02, 0.01.

VI. CONCLUSIONS

We have developed FSC models that characterize the er-
ror sequence of a communication system operating over
a fading channel. Markov models of order up to 6 have
been proposed as an approximation to the DCCA model
for a broad range of fading environments. It is observed
that the first-order approximation is satisfactory for fpT
around 0.1. In the range of signal to noise ratio consid-
ered, the Kth-order Markov (for judiciously selected K)
is an accurate model for fast and medium fading rates
(fpT > 0.02). The GEC model is not adequate for low
signal to noise ratio (Es/Ny < 15 dB), but it becomes ac-
curate, for a broad range of fading rates, when the signal
to noise ratio increases. Higher order models are needed
to approximate Rician fading with respect to Rayleigh
fading with the same fading parameters.
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