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ABSTRACT 
 
In this paper, an EEG-based biomarker for automated 
Alzheimer’s disease (AD) diagnosis is described, based on 
extending a recently-proposed “percentage modulation 
energy” (PME) metric. More specifically, to improve the 
signal-to-noise ratio of the EEG signal, PME features were 
averaged over different durations prior to classification. 
Additionally, two variants of the PME features were 
developed: the “percentage raw energy” (PRE) and the 
“percentage envelope energy” (PEE). Experimental results 
on a dataset of 88 participants (35 controls, 31 with mild-
AD and 22 with moderate AD) show that over 98% 
accuracy can be achieved with a support vector classifier 
when discriminating between healthy and mild AD patients, 
thus significantly outperforming the original PME 
biomarker. Moreover, the proposed system can achieve over 
94% accuracy when discriminating between mild and 
moderate AD, thus opening doors for very early diagnosis.  
Index Terms — EEG-based biomarker, Alzheimer’s disease 
diagnosis, amplitude modulation analysis 
 

1. INTRODUCTION 
 
After cardiovascular disease and cancer, Alzheimer’s 
disease (AD) is now the third most expensive disease and 
the sixth leading cause of death in the United States [1,2]. 
Nevertheless, there is not yet a precise biomarker to define 
AD and definitive diagnosis can only be established with a 
hystopathological analysis of the brain [3]. Hence, AD 
diagnosis is done based upon clinical history, laboratory 
tests, neuroimaging and neuropsychological evaluations, 
with accuracies ranging from 85-93% [4]. However, these 
clinical assessments are nonspecific and costly, and require 
experienced clinicians and lengthy sessions [5]. 

As a consequence, there is an urgent need for an 
accurate, universal, specific and cost-effective biomarker to 
diagnose AD and to follow disease progression and therapy 
response. Early diagnosis is crucial in order to initiate 
treatment that can retard disease progression. Over the last 

decade, there has been an effort to develop computer-based 
tools to assist physicians in making more precise and earlier 
diagnostics. Towards this goal, quantitative electro-
encephalogram (qEEG) has emerged as a promising tool [6].  

Previous findings have suggested that i) EEG spectral 
power is reduced with AD in the alpha (8-12 Hz) and beta 
(12-30 Hz) frequency bands, and increased in the delta (0.1-
4 Hz) and theta (4-8 Hz) bands [7], ii) spectral coherence is 
decreased between the two hemispheres in the alpha and 
beta frequency bands [8], and iii) EEG pattern complexity 
[9–11] is reduced. More recently, a new promising 
biomarker was developed, which was termed “percentage 
modulation energy” (PME) [12]. The marker characterizes 
the amplitude modulation rate-of-change of resting-awake 
EEG signals and showed significant differences in the 
amplitude modulation of theta and beta frequency bands 
between AD patients and controls. 

To test the effectiveness of the PME marker (henceforth 
referred to as a “feature”) in discriminating AD from 
healthy controls, a support vector machine classifier was 
developed and shown to achieve over 90% accuracy, 
sensitivity, and specificity [13]. While these results were 
promising on their own, they still remained below the best 
rates achieved by experienced clinicians [4]. In an effort to 
improve recognition performance, this paper proposes two 
updates to the PME-based diagnostic system. First, in order 
to improve the signal-to-noise ratio (SNR) of the EEG 
signal, we propose to average PME features over several 
epochs prior to classification. This is akin to the averaging 
done for calculation of EEG evoked potentials [14]. 
Previously, PME features were computed on a per-epoch 
basis [13], i.e., without averaging. Second, we propose two 
additional features termed “percentage raw energy” (PRE) 
and “percentage envelope energy” (PEE) to characterize 
overall per-band amplitude modulation rate-of-change.   
      On a dataset of 88 participants (35 controls, 31 with 
mild-AD and 22 with moderate AD), the newly proposed 
features are shown to outperform the original PME when 
discriminating AD from controls, and mild from moderate 
AD,thus opening doors for very early diagnosis.    
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2. MATERIALS AND METHODS 

 
2.1. Subjects 
In this study, AD patients and control subjects were 
recruited from the Behavioral and Cognitive Neurology Unit 
of the Department of Neurology and the Reference Center 
for Cognitive Disorders at the Hospital das Clínicas in São 
Paulo, Brazil. Diagnosis was made by experienced 
neurologists based on the Brazilian version of the Mini-
Mental State Examination (MMSE)[15] and the Clinical 
Dementia Rating (CDR) scale.  

Resting-awake multi-channel EEG recordings were 
obtained from 88 participants, separated into three 
education-matched groups. The first group was composed 
by 35 normal subjects (NS), 19 females and 16 males (mean 
age 66.9 years, 8.2 sd). Inclusion criteria for cognitively 
normal cohort were CDR score = 0, MMSE score ≥ 25 
(mean 28.0, 2.2 sd) and no indication of functional cognitive 
decline prior to enrollment based on an interview with the 
subject. The second group (AD1) comprised 31 mild-AD 
patients (according to NINCDS-ADRDA [16] and DSM-IV-
TR [17] criteria), 19 females and 12 males (mean age 75.2 
years, 5.6 sd). Other inclusion criteria for AD1 group were 
0.5 ≤ CDR ≤ 1 and MMSE ≤ 24 (mean 19.5.0, 3.6 sd). The 
third group (AD2) included 22 AD patients with moderate 
AD (DSM-IV-TR), 15 females and 7 males (mean age 73.8 
years, 10.2 sd). Inclusion criteria for AD2 group were CDR 
score = 2 and MMSE score ≤ 20 (mean 14.2.0, 3.7 sd).    

For inclusion in both AD cohorts (AD1 and AD2) an 
additional criterion was the presence of functional and 
cognitive decline over the previous 12 months based on 
detailed interview with a knowledgeable informant. Patients 
from both AD groups were also screened for diabetes 
mellitus, kidney disease, thyroid disease, alcoholism, liver 
disease, lung disease or vitamin B12 deficiency, as these can 
causes cognitive decline. Ethics approval was obtained from 
the institutes and participants consented to the study. 
 
2.2. Data Acquisition and pre-processing 
EEGs were recorded with 12 bits resolution and sampling 
rate of 200  Hz using the Braintech 3.0 instrumentation 
(EMSA Equipamentos Médicos Inc., Brazil). Impedance 
was maintained below 10  kΩ, and the electrodes (referential 
montage) were placed according to the International 10–20 
System. Biauricular referential electrodes were attached as 
recommended by the Brazilian Society of Clinical 
Neurophysiology and the American EEG Society.  

Low-pass filtering was accomplished using an infinite 
impulse response elliptic filter with a zero at 60 Hz, to 
ensure elimination of any power grid interference. From the 
referential montage we derived a virtual interhemispheric 
bipolar montage, as there is evidence of an interhemispheric 
disconnection in AD [18,19,12]. The so-called “bipolar 
signal" was obtained by simply subtracting the two bi-
auricular referenced signals involved [20]. For this work, the 

bipolar signals were Fp1-Fp2, F3–F4, F7–F8, C3–C4, T3–
T4, P3–P4, T5–T6, and O1–O2. During examination, 
probands were awake and relaxed, with closed eyes. Two 
skilled neurophysiologists manually removed EEG artifacts 
(e.g., blinking, muscle movements) from the recordings. 
Subsequently, from each EEG signal, 28 epochs of eight 
seconds were selected by visual inspection.  
 
2.3. EEG amplitude modulation analysis 
As mentioned previously, an innovative EEG amplitude 
modulation feature termed “percentage modulation energy” 
(PME) was proposed for automated AD diagnosis. While a 
complete description of the feature is beyond the scope of 
this paper, we provide a brief overview for the sake of 
completeness. The interested reader is referred to [12,13] for 
complete details.  

In order to compute the so-called PME features, first 
elliptic bandpass filters are used to decompose the full-band 
EEG signal into the five well-known subbands: delta, theta, 
alpha, beta, and gamma [21]. The temporal amplitude 
envelope ei(n) of each of the five subband EEG signals si(n) 
is then computed by means of a Hilbert transform. With the 
aim of directly quantifying the rate-of-change of the 
subband temporal envelopes and to uncover possible cross-
frequency interactions, temporal envelopes are further 
decomposed into four modulation frequency bands, 
henceforth referred to as m-delta (0.1–4 Hz), m-theta (4–8 
Hz), m-alpha (8–12 Hz), and m-beta (12–30 Hz) using 2nd 
order bandpass filters. The m-gamma modulation band is 
not used, motivated by previous findings [13]. By taking a 
short-term discrete Fourier transform of the doubly-
decomposed (framed) signals, the per-frame amplitude 
modulation energy Ei,j(k) is obtained, where ‘i’ indexes the 
filters of the first decomposition, ‘j’ the filters of the second 
“modulation domain” decomposition for frame ‘k’. As such, 
Ēi,j denotes the average modulation energy over all frames in 
the 8s-epoch. The PME feature is thus computed by:  

PMEi, j =
Ei, j
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for each of the 8 bipolar EEG signals. 
 
2.4. Overall Per-Band Modulation Features 
Here, two new “overall” per-band modulation features are 
investigated, namely the percentage “raw” energy (PRE) 
and the percentage envelope energy (PEE) features, 
computed for each subband signal, and given by: 
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for each of the 8 bipolar EEG signals, where N is the 8s-
epoch length (in samples), since for PRE and PEE 
computation, framing is not performed. It is important to 
remark that information contained in PEE is not present in 
PRE as DC components ēi of temporal envelopes are 
discarded during the frequency decomposition step. In total, 
for each participant, 240 (5x4=20 PMEs + 5 PREs + 5 PEEs 
for 8 bipolar signals) features are extracted for each epoch. 
Due to Bedrosian’s theorem [22], however, not all of these 
features convey useful information, thus a total of 192 (14 
PMEs + 5 PREs + 5 PEEs for 8 bipolar signals) are used.  
 
2.5. SNR improvement during feature extraction 
In order to improve the SNR of the extracted features, an 
averaging procedure is performed, akin to what is done in 
EEG evoked responses studies. To this effect, we investigate 
the benefits of averaging over different number of epochs 
(Ne = 0, 5, 10, 15, 20), where Ne=0 corresponds to the 
original PME feature without averaging.  

 
(a) 

 
(b) 

Fig 1. Features from epochs with (a) Ne = 0 and (b) Ne = 5 
for the T5-T6 bipolar signal. 
 

Epochs are randomly selected from the pool of 28 
available epochs per participant. To better understand the 
benefits of this SNR improvement stage, the scatter plots in 

Figures 1 (a) and (b) are used. The plots depict PRE5 vs 
PME1,2 features extracted from the T5-T6 bipolar signal 
without (Ne = 0) and with SNR improvement (Ne = 5), 
respectively. As can be seen, greater feature separability is 
attained between healthy controls (circles) and AD patients 
(X) after SNR improvement.   

 
2.6. Feature selection and classifier design 
Motivated by previous findings [23,24], we explore the use 
of support vector machines (SVM) for feature selection and 
classification. A complete description of these steps is 
beyond the scope of this paper and the interested reader is 
referred to [25] and [26] for more details on SVMs. In our 
experiments, we use only the top-ranked 24 features to 
remain inline with previous classifiers reported in the 
literature [24]. When testing the effectiveness of the ‘SNR 
improvement’ step, the 24 top-ranked features were selected 
for each epoch-averaging condition (i.e., Ne = 0, 5, 10, 15, 
and 20). We used the Weka polykernel implementation with 
the following default parameter values: regularization 
coefficient C = 1 and γ = 0.01. A leave-one-subject-out 
(LOSO) cross-validation paradigm was performed for 
classifier design to avoid overfitting and to guarantee the 
generality of the classifier to unseen data.  

 
3. RESULTS 

 
Using the LOSO paradigm, different classification tests 
were performed. First, classifier accuracy is reported for 
three types of two-class discrimination tasks: NS vs AD1, 
AD1 vs AD2, and NS vs AD; this last task pools AD1 and 
AD2 into a global AD group. Each of the three two-class 
discrimination tasks described above are performed for each 
of the five SNR improvement conditions, i.e., Ne = 0, 5, 10, 
15, and 20. Table 1 reports the classifier accuracy, 
sensitivity, and specificity as performance metrics for 
‘control vs. AD’ for different SNR improvement conditions.  
 
Table 1 – Normal vs. Alzheimer classification results (%) 

Ne Accuracy 
 (NxAD) 

Specificity  
(N) 

Sensibility 
 (AD) 

0 94.32 91.43 96.23 
5 96.59 94.29 98.11 

10 97.73 100.00 96.23 
15 98.86 100.00 98.11 
20 96.59 97.14 96.23 

 
 

Figure 2 shows the classifier accuracy (vertical axis) for 
five different Ne values (horizontal axis) obtained in the 
three two-class discrimination tasks: NS x AD1 (dotted 
line), AD1 x AD2 (dashed line) and NS x AD (solid line). It 
is possible to see in Figure 2 that classification accuracy 
increased significantly as the number of averaged epochs 
increases but started decreasing after Ne = 15. 
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Fig. 2. Classifier accuracy versus number of averaged 
epochs Ne for the three 2-class problems  
 

Both Table 1 and Figure 2 present classifier performance 
not on a “per-epoch” basis, but on a more medically relevant 
“per-participant” basis, where a patient is deemed to be 
correctly classified when the majority of its 28 epochs have 
been correctly classified. 
 

4. DISCUSSION 
 

4.1. Benefits of SNR improvement 
It is interesting to note that SNR improvement was more 
important for the NS x AD1 and AD1 x AD2 classifications 
than for the NS x AD case. This is an important advantage, 
as it allows for the disease to be detected at an early stage 
(normal vs. mild AD discrimination), as well as for disease 
progression to be automatically monitored (mild vs. 
moderate AD discrimination), thus potentially opening 
doors for in-home telemedicine or tele-rehabilitation tools to 
be developed. Notwithstanding, the SNR improvement stage 
also resulted in significant gains relative to the original PME 
metric for the ‘control vs. AD’ classification task. 
 
4.2. Relationship to existing biomarkers 
In relationship to previous PME-based studies based on a 
much smaller dataset (32 participants [12,13]), the present 
experiment has validated the use of modulation energy 
features for reliable AD diagnosis on a much larger dataset. 
Moreover, with the proposed updates and innovative 
features, significant gains have been obtained relative to the 
original PME feature (see Table 1 and Fig. 2), in terms of 
accuracy, sensitivity, and specificity. Moreover, the updated 
biomarkers have also allowed for very early detection and 
automated disease severity progression assessment. 
     Relative to other studies, it is difficult to make direct 
performance comparisons, as different databases have been 
used, as have different protocols know to affect EEG 
patterns (e.g., eyes-closed vs eyes-open; rest vs. mental 

activity, etc.). As such, only indirect broad comparisons 
with other state-of-the-art techniques can be made. For 
example, using a parallel nonlinear EEG analysis technique, 
Buscema et al. [10] obtained 85.98% accuracy in 
distinguishing mild cognitive impairment and Alzheimer’s 
disease patients (143 probands), a task similar (but not 
exactly the same) to our mild vs. moderate classification. In 
the same direction and using almost the same technique, 
Rossini et al. [11] got 93.46% accuracy to automatically 
distinguish resting EEG data of 171 normal elderly vs. 115 
Mild Cognitive Impairment (MCI) subjects. Again, this is 
somewhat close to our normal vs. mild discrimination task, 
as a CDR of 0.5 is one of the conditions for MCI diagnosis 
[27] and it matches one of the inclusion criteria for our AD1 
group (mild). As can be seen, the classification performance 
results shown herein are somewhat higher performances 
than these reported in the literature, but with the additional 
benefit of allowing for accurate ‘healthy vs. mild-AD’, 
‘mild-AD vs. moderate-AD’, and ‘healthy vs. AD’ (mild 
and moderate pooled together) classification. 
 
4.3 Study limitations and ongoing work 
The findings reported herein constitute that of a “semi-
automated” system, as the artifact-free EEG epochs used in 
the experiments had been manually selected by two skilled 
neurophysiologists. In practice, a fully automated diagnostic 
system is needed, thus automated artifact removal 
techniques, such as independent component analysis [28], 
need to be explored; this is the focus of our ongoing work.  
 

5. CONCLUSION 
 
This paper has presented two updates to a recently-proposed 
spectro-temporal EEG-based biomarker for Alzheimer’s 
disease detection. First, a signal-to-noise ratio improvement 
stage is implemented, which averages amplitude modulation 
features prior to classification, thus is akin to the epoch 
averaging done in EEG event related potential studies. 
Second, two variants of the amplitude modulation features 
are developed to account for per-EEG-band modulations. 
Experimental results have shown that optimal results are 
achieved once 15 epochs have been averaged; performance 
begins to degrade beyond this point. Significant gains in 
classification accuracy, sensitivity, and specificity can be 
achieved once SNR improvement and the newly proposed 
features are incorporated into the system. As an advantage 
over existing work, the proposed system allows for accurate 
early detection of mild AD, as well as reliable assessment of 
disease severity progression from mild to moderate. Once 
fully automated (i.e., once blind artifact removal algorithms 
are in place), the proposed system may be used to assist 
clinicians with early AD assessment, as well as open doors 
to future in-home remote rehabilitation and/or patient 
monitoring tools. This is particularly useful given the 
world’s aging population and their desire to “age-in-place”. 
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