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Abstract
We propose a novel method to estimate the quality of
coded speech signals. The joint probability distribution
of the subjective mean opinion score (MOS) and percep-
tual distortion feature variables is modelled using a Gaus-
sian mixture density. The feature variables are sifted from
a large pool of candidate features using statistical data
mining techniques. We study what combinations of fea-
tures and mixture model configuration are most effective.
For our speech database, a five-feature, three-component
GMM furnishes approximately 18% lower root-mean-
squared MOS estimation error than ITU-T P.862 PESQ,
the current best standard algorithm.

1. Introduction

The evaluation of speech quality is of critical importance
in today’s telephone networks, be it plain old telephone
system, wireless, or voice over Internet, mainly because
quality is a key determinant of customer satisfaction. Tra-
ditionally, the most reliable way to measure the quality of
a speech signal was through the use of subjective testing,
i.e, a group of qualified listeners are asked to score the
speech they just heard on to a scale from 1 to 5, with 1
corresponding to unsatisfactory speech quality with very
annoying and objectionable levels of distortion and 5 cor-
responding to excellent speech quality and imperceptible
level of distortion. The average of these scores is the
subjective mean opinion score, MOS [1]. This method
of speech quality assessment is highly unsuitable for au-
tomation of voice connection quality measurement and is
also very expensive and time consuming. Due to these
reasons, models have been developed to identify audible
distortions through an objective process based on human
perception. Objective methods can be implemented by
computer programs to automate speech quality measure-
ment in real time. The International Telecommunications
Union ITU-T P.862 standard, also known as Perceptual
Evaluation of Speech Quality (PESQ) [2] is the latest ob-
jective quality measurement standard algorithm. Never-
theless, the algorithm still falls short of the accuracy that
can be obtained from subjective listening tests. In [3], an
approach is introduced that uses data mining techniques

to improve the accuracy of auditory-model based quality
measurement; significant performance improvement over
PESQ was reported.

In this paper we propose a novel method of speech
quality estimation based on Gaussian mixture mod-
els (GMMs). First a large pool of feature measure-
ments is created from the distortion surface between
the original speech signal and the degraded speech sig-
nal. Good features are then selected using two statis-
tical data mining methods, multivariate adaptive regres-
sion splines (MARS) [4] and classification and regression
trees (CART) [5]. We model the joint density of these
features (x) with the subjective MOS (y) as a Gaussian
mixture. We use this model to derive the least squares es-
timate,E[y|x], of the subjective MOS value. Simulations
show that our approach outperforms both PESQ and the
method proposed in [3].

2. Gaussian Mixture Models

Gaussian mixture models have been used extensively
within the speech processing community and will be
briefly introduced here for the sake of notation. Letu
be anN -dimensional vector, a Gaussian mixture density
is a weighted sum ofM component densities

p(u|µ,Σ, p) =
M∑

i=1

pi.bi(u) (1)

wherepi ≥ 0, i = 1, ..., M are the mixture weights, with∑M
i=1 pi = 1, andbi(u), i = 1, ..., M are theK-variate

Gaussian densities each with mean vectorµi and covari-
ance matrixΣi.

GMMs can assume several different forms, depend-
ing on the type of covariance matrices. The two most
widely used are full and diagonal covariance matrices. If
K is the dimension of the feature vector andM the num-
ber of Gaussian components, then the number of param-
eters that have to be estimated during training is given by
M
2 (K2+3K+2) for full matrices and byM(2K+1) for

diagonal matrices. The effect of usingM full covariance
matrices can be obtained by using a larger set of diagonal
covariance Gaussians [6].



In this study both cases are considered and the EM
(expectation-maximization) algorithm [7] is used for es-
timation of the weights, means and covariances of the
Gaussian components.

2.1. GMM for Speech Quality Estimation

The GMM for speech quality estimation is built on per-
ceptual feature variables. The variables are obtained from
mining a large pool of candidate feature variables. These
candidate features are obtained by classifying perceptual
distortions into a variety of contexts.

First, the clean and degraded signals are split into
7 frequency bands, each with a bandwidth of approxi-
mately 2.4 Bark. The spectral power distortion between
the clean and degraded speech signals is then found.
Time segmentation labels the speech frames as “active”
or “inactive”. Active frames are further classified into
voiced or unvoiced. The total distortion of each frame
is given severity classifications of “low”, “medium”, or
“high” by simple thresholding. Distortion samples in
time-frequency bins are thus labelled according to its fre-
quency band, time-segmentation type, and severity level.

Additional contexts are created where each subband
is further labelled with the rank order obtained by rank-
ing the 7 distortions in a frame in the order of decreasing
magnitude. Weighted mean and root-mean distortions,
probability of each frame type and the lowest-frequency
band and highest-frequency band energy of the clean
speech frames are also used to form a pool of 209 can-
didate features.

We use CART and/or MARS to sift out the most rel-
evant variables from the candidate pool. We use the top-
5 most important feature variables as ranked by MARS
or CART. We model the joint density of these features
(x) with the subjective MOS (y) as a Gaussian mixture.
The goal is to predict the value of the subjective MOS,
y, given the observed values of the5-dimensional feature
vector,x. The least squares estimate ofy givenx, namely
E[y|x], is [8]

E[y|x] =
M∑

i=1

hi(x)[µy
i + Σyx

i (Σxx
i )−1(x− µx

j )] (2)

wherehi(x) denotes the probability that theith Gaussian
component of the marginal predictor densityp(x) gener-
ated the vectorx and is given by

hi(x) =

pi

|Σxx
i |1/2

e

(
− 1

2 (x−µx
i )T (Σxx

i )−1(x−µx
i )

)

M∑

k=1

pk

|Σxx
k |1/2

e

(
− 1

2 (x−µx
k)T (Σxx

k )−1(x−µx
k)

) . (3)

The covariance matrix of theith GMM component is

Σi =
(

Σyy
i Σyx

i

Σxy
i Σxx

i

)
.

If the covariance matrices are restricted to be diago-
nal, the least squares estimate simplifies to

E[y|x] =
M∑

i=1

hi(x)µy
i . (4)

This restriction has to be used with care, as it can result
in large estimation errors when there exists a significant
amount of correlation between the predictor and the re-
sponse variables, i.e.Σyx

i are far from zero.

3. Experimental Results

We compare our algorithm to PESQ and to the method
proposed in [3], which will be referred to as SDMA (sta-
tistical data mining approach) in the sequel. We use MOS
labelled speech databases and the performance of each
algorithm is assessed using the correlation (R) between
the subjective MOS and the predicted MOS, and the root
mean squared MOS error (RMSE).

The speech databases include seven multilingual
databases in ITU-T P-series Supplement 23, two wire-
less databases and a mixed wireline-wireless database.
We combine these ten databases into a global database
and then use 10-fold cross validation to measure perfor-
mance. The global database is randomly divided into 10
data sets of almost equal size. Training and testing is per-
formed 10 times, where, each time, one of the data sets
serves as a test set and the remaining 9 are combined to
serve as a training set. Each data set serves as a test set
only once. The ten resulting R’s and RMSE’s are aver-
aged to obtain the cross-validation R and RMSE.

The parameters of the GMM are estimated via the
EM algorithm. The algorithm iterations produce a se-
quence of models with monotonically nondecreasing
(log-)likelihood values. Though the EM algorithm con-
verges to a maximum likelihood it has a few drawbacks:
it is a greedy algorithm and since the likelihood for
GMMs is not unimodal the algorithm may converge to
a local maximum and not the global maximum. GMMs
produced by the EM algorithm are sensitive to initializa-
tion and may converge to the boundary of the parame-
ter space where the likelihood is unbounded, leading to
meaningless estimates. Thek-meansalgorithm is used to
initialize the GMM parameters.

The performance results for the feature variables se-
lected by MARS and CART are shown in Tables 1 and
2 respectively. GMM-i stands for a Gaussian mixture
model withi components and % shows the performance
improvement over PESQ. The 5 most salient feature vari-
ables are listed in Table 3 for each of the data mining
techniques. The variables are defined in the Appendix.

As can be seen, when using diagonal GMMs, an aver-
age of 13.03% improvement in RMSE is achieved, while
the improvement in R is more modest. This occurs be-
cause some of the features selected by MARS and CART



Table 1: Performance Comparison for MARS selected
variables - diagonal covariance matrices

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
GMM-3 0.8086 - 1.21 0.4094 11.01
GMM-4 0.8232 0.57 0.4008 12.86
GMM-5 0.8377 2.34 0.3971 13.67

Table 2: Performance Comparison for CART selected
variables - diagonal covariance matrices

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
GMM-3 0.8315 1.60 0.4035 12.27
GMM-4 0.8395 2.57 0.3957 13.97
GMM-5 0.8531 4.23 0.3938 14.38

Table 3: Feature Variables

Rank MARS CART

1 I P VUV V WM
2 V B 5 V O 2
3 V B 2 V O 1
4 V B 2 2 V RM
5 U P VUV V O 0

have significant correlation amongst them. This is illus-
trated with the use of the correlation color map in Figure
1. This figure represents the correlation between the pre-
dictor and the response variables selected by MARS. For
CART, the color map is similar and will be omitted for
brevity. The use of a small number of diagonal Gaussian
components does not compensate for this correlation and
full covariance matrices are thus needed in order to pre-
dict the residual variation in subjective MOS.

With full covariance matrices, the number of param-
eters that need to be estimated scales quadratically with
the feature space dimension. When dealing with limited
data, as in our case, severe problems arise due to singu-
larities and local maxima in the log-likelihood function.
Many regularization schemes have been proposed to im-
prove the smoothness and generalization properties of the
estimated density function. Here we limit the spectral dy-
namic range by adding a small diagonal matrix, namely
εIn×n, to each covariance matrix in each M-step iteration
of the EM algorithm. Typically, the optimal value forε is
not known a priori. The simplest procedure, and the one
used here is to varyε over a range of values and choose
the one that leads to the best performance on the valida-
tion set. We variedε from 0.000001 to 1 and the value
that led to best performance wasε = 0.001.

Tables 4 and 5 show the performance improvements
by using full covariance matrices. With the correlation
between features properly modelled, an average improve-
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Figure 1: Correlation map for MARS-selected features.

Table 4: Performance Comparison for CART selected
variables - full covariance matrices

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
GMM-2 0.8569 4.69 0.3892 15.39
GMM-3 0.8611 5.20 0.3860 16.09

Table 5: Performance Comparison for MARS selected
variables - full covariance matrices

R % RMSE %

PESQ 0.8185 N/A 0.460 N/A
GMM-2 0.8683 6.10 0.3773 17.52
GMM-3 0.8780 6.35 0.3783 17.98

ment of 4.95% and 15.74% in R and RMSE, respectively,
is achieved for CART selected features. Further improve-
ment can be seen for MARS selected features. An aver-
age improvement of 6.23% and 17.75% in R and RMSE
is achieved. Figure 2 shows the scatter plot of the sub-
jective MOSversusobjective MOS for MARS-selected
features using three Gaussian components with full co-
variance matrices. It is also worth mentioning that our
results outperform SDMA by as much as 6% in RMSE.

4. Conclusion

A novel objective speech quality estimation algorithm is
proposed based on Gaussian mixture models. When us-
ing diagonal Gaussian components we observed that our
approach outperforms PESQ in RMSE but the improve-
ment in R is smaller. This was attributed to the fact that
the five most salient feature variables selected by the data
mining techniques were correlated and the use of only
five diagonal components was not enough to compensate
for this.
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Figure 2: Subjective MOSversusObjective MOS for
MARS-selected features using three full Gaussian com-
ponents.

By adding a bias term to the model in [9], RMSE
can be shown to be the sum of unexplained variance in
the regression model, MOS estimation error due to lim-
ited number of listeners (affecting all algorithms equally),
and the bias error between subjective MOS and objective
MOS. The calculation of R does not take into considera-
tion this bias error; therefore, unless the estimates are un-
biased or all suffer from the same bias, RMSE is a more
realistic measure of estimator performance. So if data is
limited, diagonal Gaussian components can be used with
an average improvement in RMSE of 13.03%.

In the case a larger dataset is available, one is mo-
tivated to use full Gaussian components with which
we have obtained an average RMSE improvement over
PESQ of 16.75%, or a performance improvement of ap-
proximately 6% over SDMA.

While our results show that feature mining in con-
junction with GMM modelling can produce simple esti-
mators that outperform PESQ, the robustness of the es-
timators is also an important issue. Our use of cross-
validation to measure performance offers some robust-
ness. We are currently pursuing other avenues including
the choice of feature variables.

5. Appendix

Here we describe the feature variables shown in Table 3.
The seven subbands are ordered from 0 to 6 and the three
distortion severity classes from 0 to 2.

• I P VUV: Ratio of the number of inactive frames
to the total number of active speech frames;

• U P VUV: Ratio of the number of unvoiced frames

to the total number of active speech frames;

• V B i: Distortion for subbandi of voiced frames,
without distortion severity classification;

• V B i j: Distortion for severity classj of subbandi
of voiced frames;

• V O i: Distortion for ordered subbandi of voiced
frames, without distortion severity classification;

• V WM: Weighted mean distortion of voiced
speech frames;

• V RM: Root-mean distortion of voiced speech
frames.
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