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Abstract. Quality-of-experience (QoE) produces the blue print of human 
perception, feelings, needs and intentions, while Quality-of-Service (QoS) is a 
technology centric metric used to assess the performance of a multimedia 
services and/or network. .It is quite important for service/content providers to 
understand user/customer experience requirements in order to improve the 
service quality or the content recommendation. With advent of 3G and 4G 
wireless networks, and efficient smart phones, the band-width hungry 
multimedia applications are becoming common in use on end-user devices. 
Thus,it is also important for telecom operators to understand the impact of 
wireless network performances on the user experience in mobile environment. 
On the fly evaluation of user experience for multimedia services is a 
challenging problem especially in mobile environments. It implies the 
collection and the correlation of a mixture of variables on network conditions, 
on the service, as well as on the user itself. This paper proposes an innovative 
mobile application that can be used for measuring user quality-of-experience on 
the fly with a high accuracy and the consideration of multiple parameters about 
the user, the network and the system. This application takes advantages of 
current advances in mobile technologies to measure user experience directly on 
the user device. In addition, it aims to preserve the user privacy by transmitting 
only estimated quality-of-experience to the service provider.  

Keywords: QoE; QoS; context; mobile computing; 3G UMTS; video 
streaming; machine learning. 

1   Introduction1 

The wide spread deployment of Wi-Fi, 3G and 4G cellular networks has increased the 
use of smart phones, which has changed the landscape of information and 
communications technology. Due to advanced operating capabilities of smart phones, 

                                                           
1 A short abstract of this article has been accepted as a work-in-progress report in the IEEE Pervasive 

Computing magazine, Oct-Dec issue, 2012. [1] 



multimedia applications are now being developed massively and made available 
through Google or Apple stores. These services have stringent Quality-of-Service 
(QoS) requirements. However, in a mobile environment, the user context (e.g. 
location) and network QoS change continuously, in turn continually influencing the 
user’s behavior and experience. Thus, it is critical to identify requirements for mobile 
multimedia applications that are not only related to the wireless network QoS but also 
to the user context and feedback. These requirements can be derived from user 
Quality-of-Experience (QoE) demands that can be understood by mapping the user’s 
subjective ratings to the objective QoS and contextual parameters. 

We propose in this paper an innovative user-centric, context-aware solution that 
can be used for measuring QoE on smartphones. The objective is to design an 
intelligent and user-centric QoE measurement framework for Android-based 
smartphones. Such framework can be used to analyze and evaluate user experience 
requirements for multimedia services and applications in a mobile environment. In 
this paper, we propose a framework which is implemented with a standalone 
intelligent QoE application installed on smartphone. End-user usesa multimedia 
service, and s/he gives a QoE score using our framework. These subjective scores are 
correlated with QoS and context parameters. The resulting dataset is then analyzed 
locally by our proposed framework in order to generate a personalized QoE model to 
assess the user perception regarding the studied service. The generated QoE model is 
updated over time with respect to changes in the QoS or contextual parameters, i.e. 
network or application performance criteria. This application not only captures QoS, 
contextual parameters and the user ratings but also analyzes and generates the 
personalized QoE results for a given user session. Furthermore, QoE is never a fixed 
value; it keeps updated over the time with respect to changes in QoS or in contextual 
parameters. 

The novelties of our solution are first, the collection of QoS, contextual and user 
ratings locally on user smartphones; and second, the client-side analysis of the 
collected data to generate a personalized QoE model locally on smartphones. The data 
are analyzed as soon as the user finishes interacting with the studied service or after a 
consequent change in the user perception. 

2   Challenges and Motivations 

From the telecom perspective [2], the network’s performance can be monitored by 
collecting and investigating key performance indicators such as QoS parameters. 
These technical indicators are measured at the different levels in a wireless network. 
The examples of theseindicators collected at network layer are  bandwidth, delay, 
jitter, packet loss rate, etc., and at  end-user device level(e.g. noise/interference level, 
signal strength, connection establishment time, drop rate, etc.).  

On the other hand, from the user perspective [2], the network’s performance can be 
monitored by collecting user feedback, i.e. QoE data. In contrast to QoS, QoE 
provides an assessment of human perceptions, feelings, emotions and intentions with 
respect to a particular product, service or application [18]. QoE is affected by various 
technological, business and contextual factors [19] [3].  



It is extremely difficult for telecom operators to measure QoE as it depends on 
various factors [4]: objective ones related to network condition and subjective ones 
related to user perception. For example, the QoE for a video streaming service 
depends on network conditions (e.g. bit rate, packet loss rate) and viewing conditions 
(e.g. type of used device, at home or work, etc.). 

Moreover, it is quite challenging to establish an accurate QoS to QoE mapping 
method for different applications as it is hard to choose the relevant QoS parameters 
for a given application [5]. It is also challenging to evaluate feedback with respect to 
QoS and context data as acquiring these different parameters is difficult in a mobile 
environment. Another challenge [6] was due to the limited computing capabilities of 
user terminals which make QoE processing on these devices hardly possible. This 
challenge was valid for traditional featured phones as they were limited in terms of 
processing powers and not designed for calculation task. This is no longer valid as 
current smartphones have improved processing capabilities and they are equipped 
with flexible operating system allowing the development of advanced applications. 
For example, the Google Nexus runs the Android 4.1 operating system; it has 1 Gb 
RAM memory and 1.2 GHz CPU processor. 

These improvements in mobile device capabilities as well as the fact that the 
mobile devices are the closest elements to end-user motivate our work for a full 
client-based QoE measurement framework. This proposed framework aims to collect 
and process both QoS and QoE data locally on the user device and create a 
personalized QoE model. Compared to QoS-based approaches, this approach is closer 
to user and provides better insights about user experience. 

3   User-centric QoE measurement 

Existing QoE frameworks tend to upload the data needed for generating QoE model 
from multiple users to a central server to process and aggregate them. Our objective is 
to avoid unnecessary Internet traffic generated by uploading data to a distant server by 
performing a local management of QoE parameters.  This enables the generation of a 
personalized QoE model and better user privacy by storing and processing user 
information locally on his device. We propose a user-centric way for measuring QoE 
parameters, directly on the user device. 

3.1   Framework architecture 

Our architecture is composed of an Android application running on the user 
Smartphone for measuring user QoE; multimedia server (e.g. YouTube) from which 
the videos will be streamed over a 3G/WiFi connection via Real Time Streaming 
Protocol (RSTP). 

Figure 1 presents main components of the Android application responsible for QoE 
measurement, interaction with the end-user and with the remote multimedia service 
provider (MSP). 
 



 

Fig. 1. Architecture of the Android application for QoE measurement. 

The manager component (MC) is the main component responsible for interacting 
with the outside world (user and service provider) and managing rest of the system 
components. The data collection component (DCC) is responsible for acquiring QoS 
(e.g. jitter, packet loss) and user context (e.g. GPS data) related information. The 
Cache Component (CC) is responsible of caching temporarily, a set of collected data 
(QoS, context and QoE) and the generated QoE model. The processing/updating 
component (PUC) works in two modes: learning and automation modes. In the 
learning mode, this component uses a supervised learning algorithm (for instance a 
linear regression) to generate a personalized QoE model and stores it into the cache 
component. The generated model is updated continuously with the cached data and 
each time the cached data is consumed, the cache is emptied. 

In the automation mode, the component is responsible for predicting QoE 
parameters (e.g. did the user like the video content?), with the use of the cached QoE 
model. Thanks to this mode, a multimedia and telecom service provider can use our 
framework as an integrated component to its multimedia service to evaluate the the 
user experience regarding the usage of the service. In this case, the predicted QoE 
values can be for instance sent to the multimedia and telecom service provider in 
order to personalize the recommended videos. 

3.2   Collected parameters 

Smartphones are a rich source of information about user and his/her environment. 
Table 1 summarizes the data we are collecting on the client-side for generating user 
QoE model. These collected data belong to the following categories.  

User related information: input from user describing his satisfaction through 
various ratings after viewing a video;  

 



Table 1.  Collected parameters for QoE model generation.  

Parameter Unit Value Sampling  

User related information 
Satisfaction state [yes, no] On thumbs up/down 
Video Quality integer [1, 5] When user stop watching 
Video Content integer [1, 5] When user stop watching 

Application related information 
Watched % [0, 100] When user stop watching 
Error 

 

% [0, 100] On error 

 

Device related information 
CPU % [0, 100] Each second 
Memory % [0, 100] Each second 
Battery level % [0, 100] Each second 
Latitude double [0, 180] On location changes 
Longitude double [0, 90] On location changes 

Network related information 
Jitter second [0, ∞[ On RTSP packets arrival 
Loss rate % [0, 100] On RTSP packets reordering 
Network Type state [WiFi,3G,L

TE] 
On changes 

RSSI dBm ]-∞, +∞[ On changes 

 
Application related information: Video parameters like time spent watching the 

video (i.e. if or not the whole video was watched) or the moment when an error had 
happened (e.g. related to a bug in the application) while the user was watching the 
video; 

Device related information: battery related information like level, its health (e.g. 
good), its status (e.g. charging); CPU usage (e.g. percentage consumed by our 
application); memory usage (e.g. amount of memory needed by our application); 
Location information like the name of the location provider, altitude, longitude, etc. 

Network Performance related information like signal strength, QoS parameters 
like delay and jitter, received packets; network type (e.g. UMTS, LTE, GPRS); 

In our implementation, there is no fix sampling rate as the Android platform allows 
applications to subscribe for specific events (e.g. network type/location changes) to be 
notified on their occurrence. This way, there is no need for a continuous polling of the 
event source (e.g. GPS sensor, network manager). 

3.3   Implementation details 

The different components in Figure 2 are implemented as Android threads (i.e. 
AsyncTask) except the cache which is implemented as an Android ContentProvider 
able to store data locally into the Android SQLite database. The application has two 
Android activities: the first one displays a list of videos; the second one displays the 
chosen video. We used the YouTube API (Application Programming Interface) to 



stream videos from the multimedia service provider. Some Android APIs are used to 
get contextual information (e.g. location) and QoS parameters (e.g. jitter). 

When the application is started, a list of videos is displayed from which the user 
can choose one video to watch. Two ways are provided to user to report his/her 
satisfaction (which is represented by the reported QoE score): While s/he is watching 
the video thanks to thumbs up (QoE score = 4) or thumbsdown (QoE score = 1) 
buttons, or at the end of the video by answering the questions (QoE score ranges from 
0 to 5). The reported QoE will be stored in the cache to be processed later when there 
will be enough available data; i.e when the cache becomes full. 

 

 
(a) (b) 

Fig. 2. Screenshots from the QoE measurement application.  

Figure 2 depicts a screenshot from an implementation of the QoE measurement 
frame work. The GUI (Graphical User Interface) showed in (a) displays a list of 
videos. The one in (b) is composed of a top area where the video is displayed. In the 
middle, the user can use the thumbs up/down buttons to express his current liking and 
disliking of the displayed video. At the bottom, there is a button for submitting this 
user survey. 

3.4   Components interaction 

Figure 3, illustrates the framework sequence diagram. When the user reports its QoE, 
the Manager sends this value to the data collection component. In addition to the QoE 
value, it collects the current QoS and user context information, and stores them into 
the cache. When the stored examples in the cache reach a certain value (configurable 
parameter), the processing-updating component is notified to consume them and to 
generate an updated version of user QoE model. 



When the multimedia service provider requests a QoE value for the currently 
streamed video, the manager component sends back the user reported QoE (if there is) 
or a predicted value generated by the processing-updating component. 

 

 

Fig. 3. Sequence diagram for QoE management. 

4   Learning and Processing 

All the data is not available at a single time but it is gathered continuously and 
progressively over the time. Thus, the iterative nature of linear regression may help in 
building accurate model which fits our needs. Our learning algorithm, implemented 
by the processing/updating component, is based on the multivariate linear regression 
[7] where input parameters are QoS and contextual information and QoE is the output 
or target variable. For each learning phase, the size of the training set or number of 
samples is ‘m’ which is also the size of the cache. The hypothesis (h) represents the 
model to be learned for predicting future values of QoE (ypredicted) for a giving sample 
vector (X), i.e. ypredicted = h(X). Mathematically, h is defined in equation (1), where xi 
is an input parameter, n is the number of input parameters, and θj the weight of the 
corresponding input parameter. It is the set of weights that represent the parameters to 
be learned. 
 

h(X) = θ0x0 + θ1x1 + θ2x2 + … + θnxn (1) 

 
The learning algorithm tries to predict the best values of the hypothesis parameters 

(vector of θ values) minimizing the difference between the output QoE value and real 



value (ypredicted – yreal). Equation (2) defines mathematically the cost function ‘J’ which 
is based on a model (vector of θ values) to output the cost of this model by the 
summation of distances between predicted values hθ(x) and real values y for all 
samples (rows) of the dataset. 

 

(2) 

 
To predict best values of θ parameters, we use a modified version of Batch 

Gradient Descent (BGD) [8]. BGD is an iterative optimization algorithm that requires 
the whole data set to be available and then it does line search to find the best step size, 
which makes it a slow algorithm. Instead, our modified version (which is also an 
iterative optimization algorithm) operates on the data stored into the cache when ‘m’ 
(cache size) samples become available, i.e. when the cache becomes fullThe 
motivations behind M-BGD is that on a mobile environment the samples are streamed 
(i.e. continuously collected) and thus traditional BGD cannot be applied in a single 
learning phase as we cannot have a full dataset. In this case, the learning should 
instead be continuously performed. 

M-BGD (Modified Batch Gradient Descent) first normalizes input parameters (P) 
as shown in equation (3).. This normalization aims to project data into the [-1, 1] 
interval in order to avoid parameters scaling problem that may influence the resulting 
model. 

 

 

(3) 

 
Second, M-BGD updates θ values continuously until convergence or stagnation at 

a local minimum given the following algorithm: 
 
Initialize θ parameters (e.g., to 0); 

Repeat until convergence: 

 
By replacing J derivative with its value, the last loop becomes: 
Repeat { 

 
} 

 
Where Xi is a vector representing the ith sample/input features, Yi is the QoE value 

corresponding to the ith row of the training set, and θj represents the learned 
parameters corresponding to the jth feature/column. The latter are initialized the first 
time to zero. Then, after each training phase, θj are stored to be reused the next phase 
as initialization values. The ‘α’ regulate the convergence speed of θj values. 



The cost function ‘J’ is a convex function; it has then a unique minimum which is 
the global minimum at which θ values are best values that gives the minimal distance 
between predicted and real output values. Convergence of θj to best values is 
guaranteed. But gradient descent is an iterative algorithm and it is known to be too 
slow as the all dataset is used many times during each iteration. The ‘α’ parameter 
needs to be well chosen to speed up the algorithm convergence. 

5   Evaluation 

Our first goal is to understand the impact of the modification brought to the original 
Batch Gradient Descent (BGD) algorithm with respect to the optimization of an 
objective function. In our case, this optimization aims to calculate the best weights 
that correspond to the QoS and context variables used in the objective function to 
measure the QoE score. We implemented the original Batch Gradient Descent (BGD) 
algorithm and our variant Modified BGD (M-BGD) algorithm to compare their 
performance in term of evolution of the output cost function (equation 2) after each 
algorithm step. Figure 4 depicts the graphs related to cost function calculated for each 
algorithm. To generate these graphs, we used some data collected from a QoE study 
of a multimedia service (video streaming) that involved 24 subjects (6 women and 18 
men) aged between 20 to 35 years. The data is composed of output parameters (QoE 
values given by users) and input parameters including the video category (‘0’ for fast 
videos like football match, and ‘1’ for slow videos like a ship moving in the large 
sea), and QoS parameters (packet loss, packet reorder, video bit rate). 

In case of BGD, the cost function is calculated for the whole dataset each time and 
this is why its graph is smooth (it can be represented with a linear function) and the 
cost value is decreasing in a steady way. At the other hand, the cost function of M-
BDG is calculated only for the available data in the Cache component which makes 
the cost value oscillate continuously as the model may fit current data while not 
perfectly fit the next set. The BGD need more data to output a low cost value, while 
M-BGD is able to output an acceptable cost (less than 1). 

 



 

Fig. 4. Cost function graphs of two methods.  

A second goal is to understand the relation between QoS parameters and QoE 
scores. For this, we conducted a set of experiments with our framework to collect 
QoE scores under varied QoS conditions (network related). After aggregating the 
resulting data, the Figure 5 shows the relation between users QoE and network QoS. 
It is clear that the obtained QoE scores are inversely related to disturbance of QoS 
parameters as stated in [9]. 

 

 



Fig. 5. Relationship between QoE score (y-axis) and QoS values (x-axis).  

6   Related works 

Commonly, QoE is evaluated in Living Labs [9] which is a user-centric ecosystem 
that involves users in testing/assessing new services (e.g. multimedia, games). 
Another possibility for measuring QoE is to hire a representative panel of real users of 
the service (e.g. telephony). In both cases, the evaluation is based on questionnaires 
where users have to answer after a service usage session. After collecting multiple 
answers from the participant users, the Mean Opinion Score (MOS) [10] method is 
used to evaluate the overall QoE of the service. These methods are experimental and 
passive in way they need to: hire a group of users, put them in a controlled 
environment, experiment the service under study in different conditions, collect data 
from users and correlate them with experiments setups to finally generate an 
aggregated QoE model. An example of such approach is presented in [11] where the 
authors propose a QoE framework for smart phones and use subjective assessment 
technique for the measurement of QoE. Their framework is based on a client-server 
model. Once, user data are collected; the server side takes the control of all user data 
and analyzes it. The purpose of the client-side application is limited to video 
streaming and reporting user feedback data to the server side. It is not intelligent 
enough to make any analysis over data and/or produce personalized QoE results for 
smart phone users. 

Objective QoE assessment methods represent another class of approaches which 
are more active [12] as they attempts to measure QoE by mapping it to some QoS 
parameters without end-user involvement. An example of such approaches is 
presented in [6] where the authors proposed a QoE measurements method for smart 
phones. The method is based on the collection and the processing of QoS data on the 
user terminal and reporting QoE based on objective (QoS) assessment. Hence they do 
not require any user feedback. However our work is based on a subjective assessment 
scheme and it provides more reliable and accurate user QoE. In fact, the generated 
QoE model is personal as it relies on user input as well as system and network 
information acquired directly from the user device. These methods rely heavily on 
QoS indicators to try to approximate the evaluation of the user perception ignoring 
user contextual information like location. Also, if a QoS to QoE mapping is accurate 
for a given class of applications, it may become obsolete for another class as different 
applications have different QoE/QoS requirements. For example, some application 
may be sensitive to jitter and delay like online video games while others are more 
sensitive to packet loss like file transferring.; some applications may need a quiet 
environment to be used (e.g. telephony), while others may need a suitable lighting 
arrangement (e.g., texting). 

 
Table 2 summarizes the description of these two main QoE measurement 

approaches, and illustrates as well a comparison between them. 



Table 2.  QoE measurement approches comparaision.  

 Data 
Collection 

Data 
Transmission 

Comparison 

Objective 
Methods 

QoS Huge data 
transmission 

Generalized QoE (QoS- specific), 
Saves time. 
No User feedback, lacks accuracy 

Subjective 
Methods 

Surveyed 
QoS / QoE 

No need for data 
transmission 

Personalized QoE (User-Specific), 
Time consuming 
Reliable and Accurate QoE 
Based on user feedback 

 
Most of the existing QoE measurement tools aims to analyze the user web 

browsing activities, especially video downloading as it represents a major part of the 
Internet traffic [13]. Some of these tools usually implement a polling interface to ask 
more or less interactively the users about their satisfaction. For instance, HostView 
[14] is an end-host tracing tool that implements a combination of objective and 
subjective QoE measurement methods. It collects network traffic, system performance 
information, and prompts also the user for feedback on network performance. Another 
tool combining both QoE assessment approaches is presented in [15]. This tool does 
not require any installation on the user side; it uses a heuristic approach to collect user 
feedbacks in an explicit way. It is able to infer the user impatience from collecting 
and analyzing the last flags of the TCP connections generated by the user activity as 
well as the end-to-end network performance. QOM frame work [20]  combines both 
subjective and objective factors, but the most of the QoE processing and management 
is done at server side.  

Typical examples of objective QoE measurement tools include: Netalyzr [16] and a 
modified version of FasterFox [17]. Netalyzr [16] is client-server application that 
allows the user to download an applet through which active tests are conducted and 
collected data are uploaded to some of the predefined Netalyzr servers. In [2] the 
authors attempted another deployment architecture based on plugins (e.g. browser 
plugin.); they modified FasterFox [17] which is a Firefox plugin originally developed 
to speed-up network performances. They used this plugin to collect data from the user 
browser and to report it to a remote server. 

The existing tools relying on QoS data imply the transfer of an important quantity 
of low level data about network metrics. The aggregation made at the back-end side 
produce a generalized model about user experience which may lack accuracy. The 
tools combining objective with subjective measurement approaches provide an 
enhanced accuracy with a more personalized QoE assessment. Nevertheless, most of 
these tools do not consider information about user situation which may be important 
for a more precise user experience assessment. The following table summarizes the 
description of the presented QoE measurement tools and attempt to compare those 
tools regarding different implementation and operational characteristics. 



Table 3.  Summary of existing QoE measurment tools.  
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Z. Qia et al. [6] Client 
side 

Objective QoE 
Assessment 

No Network parameters 

I. Ketykó et al. [11] Client-
Server 

Subjective 
assessment 

Partial Network parameters 
User feedback 

HostView [14] Client-
Server 

Combined 
approache 

Yes Network parameters 
System performance 
User feedback 

D. Collange et al. [15] Network 
centric 

Objective QoE No Network parameters 

Netalyzr [16] Client-
Server 

Objective QoE Partial Network parameters 

J. Shaikh [2] Client-
Server 

Objective QoE No Application 
parameters 

Laghari et al.[20] Client-
Server 

Combined 
approch 

Partial Network parameters 
Application params 
User information 

Our proposal Client 
side 

Combined 
approache 

Yes Network parameters 
Device parameters 
Application params 
User information 

 
Our proposed QoE framework is a simple, intelligent and self-functioning QoE 

framework which not only monitors contextual, QoS and user ratings but also makes 
QoE analysis and decisions on its own at the client side. It does not require any third 
party servers for data analysis and it produces run time QoE Evaluation. However, the 
used machine learning technique is rather simple which makes the accuracy of the 
generated QoE model relatively low. More advanced techniques (e.g. neural 
networks, Bayesian networks) should be used to enhance the accuracy.  To our 
knowledge there are currently no robust and reliable libraries implementing these 
techniques on mobile Operating Systems. In further studies, we will investigate the 
possibility of using such advanced machine learning techniques on mobile platforms, 
like Android, by porting existing libraries in the Android environment. 

7   Conclusion 

In this paper, we propose a smartphone-based framework that enables the evaluation 
of the user experience regarding multimedia streaming services. We present the 
framework architecture and implementation details. The advantages related to our 
solution are twofold. First, from the service provider perspective, the framework 
provides a better user perception assessment as the processed technical and user 
parameters (QoS, context and user rating data) are collected close to user, directly 
from the his/her device. Second, from the user viewpoint, he/she has freedom to give 



his feedback about offered quality at any time through thumbs up/thumbs down icon 
and/or user rating, with respect to a particular service, and in any situation. Third, 
from the telecom operator perspective, our framework handles “monitor, analyze and 
decide” functions on user data on smartphone and it does not require any other server 
side for these functions, hence there is no need for bulk data transfer. Also, it may 
give a privacy control to user behavioral requirements. In a future work, we plan to 
investigate the possibility of using more advanced machine learning techniques (on an 
Android device) like neural networks to generate a QoE model with better accuracy.  
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