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1. ITEM

Este template, em LATEX deve ser compat́ıvel com
qualquer PC ou Macintosh. O objetivo deste tem-
plate é sugerir um formato padrão para apresentação
de trabalhos técnicos e cient́ıficos. Para isto, basta
salvar este template com outro nome, e como arquivo
*.tex, e ir digitando o novo texto sobre este.

Os artigos submetidos à Convenção da AES não são
revisados pelo corpo editor, e poderão ser publicados
em suas formas originais, como submetidos. Para
isto, as versões finais devem ser enviadas em arquivos
PDF (*.pdf) ou em postscript (*.ps), segundo este
formato.

Itens principais (veja acima) são em letras
maiúsculas, fonte Helvetica, tamanho 8, estilo
negrito, alinhado à esquerda. O texto, propriamente

dito, é em fonte Times Roman, tamanho 9 e justifi-
cado (como este).

1.1. Sub-Item 1
Subitens usam letras maiúsculas e minúsculas, como
acima. A fonte é Helvetica, tamanho 8, estilo
negrito, alinhamento à esquerda, como no item prin-
cipal.

2. CONTEÚDO
Para garantir que os artigos da Convenção da AES
sejam consistentes com os objetivos da AES Brasil,
as instruções abaixo devem ser consideradas pelos
autores.

O conteúdo técnico deve ser preciso e coerente.
Citação a trabalhos anteriores e/ou de terceiros de-
vem ter seus respectivos créditos.
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ABSTRACT
Automatic speaker verification (ASV) performance is known to degrade in mismatched test-train con-
ditions. In this paper, we explore the effects of speech rate variation on both GMM-UBM and the
state-of-the-art i-vector based ASV systems. In our experiments, we used normal speech for training
and fast speech for testing to represent train-test mismatch. The results showed that, despite both meth-
ods being significantly affected by mismatch conditions, the performance degradation caused by speech
rate variation can be mitigated by the addition of fast speech into the training set. Moreover, we verified
that GMM-UBM outperforms the i-vector based system under mismatch conditions, although the same
was not true under matched situations.

0 INTRODUCTION

Given the constantly increasing number of speech
applications on smartphones and devices, one can as-
sume that the market for speech technology will be-
come widespread in the near future. According to re-
cent reports [1], the industry is expected to hit over US$
31 billion by 2017, due to the fast growing demand for
three voice applications: automatic speech recognition
(ASR), automatic speaker verification (ASV) and text-
to-speech synthesis (TTS). Although ASV can achieve

good accuracies under matched conditions (i.e., when
no discrepancies are encountered between testing and
training data), it is still a great challenge to keep perfor-
mance at acceptable levels for real-world applications
where mismatch between training and test conditions
are seen. To overcome degradation, most recent re-
search has focussed on channel effects, such as noise
and reverberation [2, 3, 4], or on vocal effort (e.g., whis-
per and loud voices) [5, 6]. Speech rate though, as a
form of speaking-style variation, has been overlooked
by the ASV research community.
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Figure 1: Generic block diagram of an automated speaker verification system.

This paper is concerned with speech rate variation
which is an import issue for practical speech applica-
tions considering that speakers commonly vary their
speed of articulation while producing an utterance. For
instance, variation may occur either depending on the
vocal effort being used [5] or due to the emotional state
of the speaker. Some people may speak faster or even
slower than usual just for being distressed while mak-
ing an emergency call. Based on the assumption that
average duration of a sentence increases under the con-
sumption of alcohol, speech rate features have been
used to detect intoxicated speech [7]. Moreover, the
authors in [8] have investigated how speech rate and
speaker’s respiration are related. As can be seen, speech
rate variability is a common factor in practical speech
applications, yet little work has been done to investigate
its effects on ASV performance.

It is known that intra-speaker variability has a nega-
tive impact on ASV. In [9], a number of experiments
were conducted in order to show the detrimental in-
fluence of 10 types of disguised voices on automatic
speaker recognition. In [6], the authors presented the
impact of five different vocal effort levels (i.e., whis-
per, soft, normal, loud and shouting voice) on speaker
recognition systems and also proposed the use of the
so-called multiple model framework (MMF) associated
with a specialized vocal effort classifier as a means to
confer robustness to the system. The work presented in
[10] has confirmed that it is possible to improve ASV
performance by combining a fixed length of normal
speech with variable lengths of whispered speech into
the training set.

Motivated by these findings in related fields, the
approach taken in this paper considers a speaking-
style independent model where variable lengths of fast
speech are used together with a fixed length of nor-
mal speech during enrolment. Gaussian mixture models
(GMM) based systems with universal background mod-
els (UBM) are compared to the new so-called i-vector
based system, which has demonstrated state-of-the-art
results with normal speech. To the best of the authors’
knowledge, these systems have yet to be tested under
speech rate variation conditions.

This paper is organized as follows. Section 1 de-
scribes the ASV systems based on the GMM-UBM and

i-vector frameworks. Section 2 presents the database
used in this paper and also gives the details about the ex-
perimental setup. Results and discussion are presented
in Section 3. Lastly, Section 4 concludes the paper.

1 ASV SYSTEMS

In automatic speaker verification, the goal is to
decide whether or not a speech sample belongs to a
claimed speaker. Figure 1 depicts a general scheme of
such a system. The ASV problem can be approached
by applying a likelihood-ratio test to a test utterance in
order to decide if the claimer must be accepted as the
genuine speaker or rejected as an impostor. The first
hypothesis, H0, states that X belongs to the claimer.
The second hypothesis, H1, states that X belongs to an
impostor. According to [2], the likelihood-ratio is given
by:

p (X the genuine speaker)

p (X not the genuine speaker)
=
p (X | λC)
p (X | λC)

, (1)

where X is a set of feature vectors, λC stands for the
model corresponding to the claimed speaker identity
(H0) and λC correspond to its complement, i.e., it must
represent every speaker other than the claimant (H1).

Transcribing the likelihood-ratio to the log domain
corresponds to:∑

= log p (X | λC)− log p (X | λC). (2)

The decision on accepting or rejecting the speaker iden-
tity is based on a threshold θ. The idea is to accept the
claimer if

∑
> θ and reject if

∑
< θ. In our exper-

iments, the Microsoft Research MSR Identity Toolbox
was used [11].

1.1 Pre-processing, feature extraction,
and GMM-UBM

As a pre-processing step, each speech recording
was downsampled to 8 kHz, pre-emphasized and nor-
malized at -26 dBov (dB overload). Features used
were the mel-scale cepstral coeficients (MFCC), ob-
tained every 10-ms using a 20-ms Hamming window.
After applying the FFT, a set of 24 triangular band-
pass filters obeying the Mel scale were used. Discrete
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cosine transformation (DCT) was also applied, result-
ing in 19 cepstral coefficients and log-energy. Delta
and double-delta coefficients were then computed from
the MFCCs and log-energy features, resulting in a fi-
nal 60-dimensional feature vector. After features are
extracted, a universal background model is character-
ized by a GMM (GMM-UBM) via the well-known
expectation-maximization (EM) algorithm. Then, via
maximum a posteriori (MAP) adaptation, speaker mod-
els are obtained for each speaker. In our experiments,
64-component GMMs were used.

1.2 I-Vector Based ASV
The i-vectors are obtained via a joint factor anal-

ysis (JFA) framework [12, 13]. More specifically, the
speaker-dependent GMM mean components (obtained
via GMM-UBM MAP adaptation) are combined into
the so-called supervector M, which is assumed to con-
vey speaker dependent, speaker independent, channel
dependent, and residual components. Each component
can be represented by a low-dimensional set of fac-
tors, which operate along the principal dimensions (also
known as eigen-dimensions) of the corresponding com-
ponent. Mathematically, this is represented as:

M = m+ V y + Ux+Dz, (3)

wherem is the speaker and channel-independent super-
vector, V the speaker eigenvoice matrix, D the diago-
nal residual matrix, U is the eigen-session matrix, and
y, z, x correspond to the low-dimensional eigenvoice,
speaker-specific eigen-residual, and eigen-channel fac-
tors, respectively.

Instead of assuming subspaces for modelling
speaker and channel variability, as above, the authors
in [14] proposed the use of a simple space, referred to
as total variability space. The argument for this new
approach relies on the fact that channel factors esti-
mated by JFA contains information about speakers, as
shown in the experiments performed in [14]. Hence, for
a given utterance, both speaker and session components
represented by (3) can be rewritten as:

M = m+ Tw (4)

where T corresponds to a retangular low-rank matrix
and w a random vector with normal distribution. The
so-called hidden variable w contains the component
factors and is referred to as the identity vector (i.e., i-
vector) [14]. As suggested by Fig. 2, m is the mean
supervector extracted from the universal background
model. Notice also in the diagram that parameter s de-
fines the number of i-vectors and n its dimension.

Within the i-vector framework, the decision process
in the total variability space consists basically in com-
puting the similarity between the target speaker fac-
tors and test speaker factors. Support vector machines
(SVM) using cosine kernels can be applied to the to-
tal variability decision process, but one can base the

Figure 2: Block diagram of the i-vector extraction.

score only on the cosine kernel. Other techniques such
as Within Class Covariance Normalization (WCCN),
Linear Discriminant Analysis (LDA) and Nuisance At-
tribute Projection (NAP), have also been applied in or-
der to remove channel effects [15]. In our experiments,
we used 50 total factors defined by the total variability
matrix T , and the dimensional reduction obtained by
LDA led us to 35 factors. We haven’t found any signifi-
cant improvements by considering higher values for the
total factors.

2 EXPERIMENTAL SETUP
The Chains corpus was used in our experiments

[16]. The corpus features recordings of 36 subjects, in-
cluding male and female with different accents. Six dif-
ferent speaking styles are available but our experiments
are based only on the normal and fast speech condi-
tions. Each speaker read 37 prepared texts which gen-
erated 37 distinct speech files. The content read was
always the same independently of the type of vocal ef-
fort or speaking style used by the subject. The normal
style was obtained with the subjects reading each text at
a comfortable rate. Fast speech recordings, on the other
hand, were obtained after subjects were given a speech
sample to be taken as an example of the aimed rate.

During the enrolment phase, the first four speech
files of each speaker were used for training, which
added up to roughly 120 seconds for normal speech and
around 60 seconds for fast speech. The remaining 33
speech files were used for testing, as the first four were
already used for training. Both styles shared about the
same length of data, 50 seconds, for testing. Three ex-
periments were conducted. The aim of the first exper-
iment was to compare the performance of the GMM-
UBM and i-vectors based methods in matched train-test
conditions. The second, on the other hand, investigated
the effects of train-test mismatch. Lastly, the third ex-
periment investigated the benefits obtained by includ-
ing normal and increasing amounts of fast speech dur-
ing training. We use two performance figures to gauge
system performance, namely equal error rate (EER) and
detection error tradeoff (DET) curves.

3 RESULTS AND DISCUSSION
Table 1 shows the performance results obtained for

the two ASV systems under matched train-test condi-
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tions. As can be seen, almost perfect verification perfor-
mance is achieved with i-vectors in the normal-normal
train-test matched conditions. Training and testing with
fast speech decreased performance with both systems,
but the i-vector based one still outperformed the GMM-
UBM one.

Figure 3, on the other hand, shows DET curves for
the two systems under mismatch conditions. Dashed
curves show GMM-UBM (blue) and i-vector (red) per-
formance obtained by training with normal speech and
testing with fast speech. The solid curves, on the other
hand, show the case where speaker models were ob-
tained with fast speech and tested with normal speech.
Comparisons with Table 1 clearly show the negative ef-
fects observed with mismatch conditions for both ASV
systems. In this mismatched scenario, training with
normal speech resulted in best performance and, unlike
the matched case, in this mismatched experiment, the
GMM-UBM system outperformed the i-vector one.

As mentioned previously, the third experiment in-
vestigated the effects of including normal speech and
increasing amounts of fast speech during training. In
this experiment, we investigated the addition of 20, 40,
and 60 seconds of fast speech to the available 120 sec-
onds of normal training speech. Figures 4 and 5 show
plots of EER as a function of the amount of fast speech
used during training for GMM-UBM and i-vector ASV,
respectively. In both cases, addition of fast speech
had a subtle detrimental effect on ASV performance
with normal test data, but resulted in monotonically im-
proved performance with fast test speech as the amount
of training fast speech increased. Overall, the GMM-
UBM framework outperformed the i-vector based one
for both normal and fast test speech. Table 2 summa-
rizes the EERs obtained with this third experiment. As
can be seen, by adding 60 seconds of fast speech to
the normal speech training data, decreases in EER of
78% and 77% can be achieved (relative to using nor-
mal speech alone for training) by the GMM-UBM and
i-vector systems, respectively.

4 CONCLUSION

In this paper, two methods for ASV have been
evaluated taking into consideration mismatched condi-
tion. The classical GMM-UBM and the state-of-the-
art i-vector were compared towards robustness against
speech rate variation. Both methods failed to overcome
the issue of mismatched condition caused by normal
and fast speech. We verify that i-vector outperformed
GMM-UBM in matched situation. However, consid-

Train and test mode GMM-UBM i-vector
Normal 0.19% 0.04%

Fast 1.38% 0.52%

Table 1: GMM-UBM and i-vector performance in
terms of EER (%) for matched train-test conditions

Figure 3: DET curve of GMM-UBM and i-vector ASV
under mismatched conditions.

Figure 4: GMM-UBM equal error rates as a function of
different lengths of fast speech added to normal speech
during training.

Figure 5: I-vector equal error rates as a function of dif-
ferent lengths of fast speech added to normal speech
during training.
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duration of Test (Fast) Test (Normal)
fast speech (s) GMM-UBM i-vector GMM-UBM i-vector

0s 11.57% 15.83% 0.19% 0.04%
20s 6.66% 8.17% 0.31% 0.83%
40s 4.16% 5.00% 0.46% 1.08%
60s 2.5% 3.64% 0.45% 1.66%

Table 2: GMM-UBM and i-vector performance in terms of EER (%) considering variable lengths of fast speech
into the training set.

ered mixing up a fixed length of normal speech and a
variable length of fast speech, GMM-UBM surpasses
i-vector in circumstances of mismatch. We have con-
firmed our hypothesis that speaking-style independent
system based on normal and fast speech can mitigate
performance degradation even when speakers vary their
speech rate between training and testing phase.
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