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Presenta=on	  Overview	  
•  Preamble	  on	  Alzheimer’s	  Disease	  (AD)	  
•  Exis=ng	  diagnos=c	  tools	  
•  Drawbacks	  and	  mo=va=on	  for	  EEG	  
•  Where	  are	  we	  now	  
•  Where	  we	  are	  heading	  
•  Conclusions	  
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Alzheimer’s	  Disease:	  An	  Epidemic	  (?)	  	  
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Worldwide	  Epidemic	  
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Change	  in	  Number	  of	  Deaths	  
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Something	  Needs	  to	  be	  Done	  	  
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Neuropsychological	  examina=on	  

•  Mini-‐mental	  state	  
examina=on	  (MMSE)	  

•  Montreal	  Cogni=ve	  
Assessment	  (MoCA)	  

•  70-‐90%	  accuracy	  
•  Lower	  for	  MCI	  (mild	  
cogni=ve	  impairment)	  

•  Not	  very	  useful	  for	  
prognosis/progression	  	  
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•  Definite	  diagnosis	  requires	  
post-‐mortem	  histopatho-‐
logical	  analysis	  of	  the	  brain	  

Definite	  Diagnosis	  
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What	  is	  Known	  
•  Beta	  amyloid	  plaques	  

– “S=cky”	  protein	  fragments	  
that	  are	  normally	  broken	  
down	  and	  eliminated	  

– AD:	  block	  cell	  signaling	  
and	  blood	  flow	  

•  	  Neurofibrillary	  tangles	  
– Microtubule	  transports	  
nutrients	  through	  nerve	  
cell	  à	  tau	  protein	  
abnormal	  with	  AD	  	  
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How	  is	  Technology	  Helping?	  

•  S-‐MRI:	  detect	  =ssue	  loss	  
•  PET:	  tracer	  binds	  to	  beta	  
amyloid	  

•  SPECT	  perfusion:	  assess	  
regional	  blood	  flow	  
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Drawbacks	  &	  Mo=va=on	  for	  EEG	  

•  Tissue	  loss	  and	  atrophies	  represent	  late	  stage	  of	  
neural	  dysfunc=on	  à	  early	  detec=on	  (?!?)	  

•  Expensive	  equipment,	  experienced	  personnel	  
– Low-‐income	  countries,	  rural	  and	  remote	  areas	  (?!?)	  
– Urban	  areas:	  long	  wai=ng	  =mes	  (e.g.,	  in	  Canada:	  up	  to	  
6	  months	  for	  non-‐emergency	  MRI)	  

•  EEG:	  becer	  suited	  to	  reveal	  func=onal	  impairment	  
as	  it	  reflects	  the	  electrical	  ac=vity	  of	  neural	  =ssue,	  
evident	  long	  before	  actual	  =ssue	  loss	  occurs.	  	  
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Classical	  EEG	  Findings	  (c.	  1980’s)	  
Res$ng-‐Awake	  

•  “Slowing”	  of	  the	  EEG:	  
increase	  in	  EEG	  delta/
theta	  power	  and	  a	  
decrease	  in	  alpha/beta	  

•  Inter-‐hemispheric	  
disconnect	  (alpha/beta)	  

•  Non-‐linear	  dynamics:	  
decrease	  in	  complexity	  	  
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New	  EEG	  Features	  
Hemodynamics	  involved	  

in	  informa=on	  
processing	  via	  neural	  
ac=vity	  modula$on	  
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Healthy	  vs.	  Alzheimer’s	  
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Experimental	  Results	  (22:AD,	  12:C)	  

Feature' Accuracy'
(%)''

Sensi2vity''
(%)'

Specificity'
(%)''

Coherence((I)' 70.6( 86.4( 41.7(

Power((II)' 85.3( 90.9( 75.0(

PME((III)' 88.4( 90.9( 83.3(

I(+(III' 79.4( 86.4( 66.7(

II(+(III' 94.1% 96.5% 91.7%

I(+(II(+(III' 91.2( 96.5( 83.3(
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(Not)	  Automated	  and	  (Not)	  Portable	  

•  Mul=-‐channel	  medical	  (research)	  grade	  EEG	  
– 20,	  32,	  64	  channels	  
– Not	  portable	  

•  Require	  visual	  inspec=on	  of	  ar=fact-‐free	  epochs	  
– Remove	  movement,	  muscle,	  eye-‐blink	  ar=facts	  
– Labor-‐intensive,	  requires	  experienced	  personnel	  
– Not	  automated	  
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Automated	  and	  Portable	  
•  Seven-‐channel	  portable	  system	  
•  Automated	  Ar=fact	  Removal	  (AAR)	  

•  Relevance	  vector	  machine	  (RVM)	  vs	  SVM	  
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Fig. 5. Distribution plot of per-participant epochs classified as having more
(unshaded) or less (shaded) than 75% class membership.

A closer look at the selected features from Ta-
ble I shows that three features show up in both the
manually-selected as well as wICA-processed top feature
pool, namely: “O1 O2 theta pwr”, “PZ alpha pwr”, and
“F3 F4 delta cohe mag”, thus showing the robustness of the
bipolar O1-O2 and F3-F4 signals, along with the PZ alpha
subband to EEG artefacts. Table III shows the distribution
of the selected features across the different feature classes,
brain regions, frequency subbands, and electrode montages.

TABLE II. PERFORMANCE COMPARISON OF SEMI-AUTOMATED
BENCHMARK AND FULLY-AUTOMATED AD DIAGNOSTIC SYSTEMS.

System Accuracy (%) Sensitivity (%) Specificity (%)
Benchmark 84.7 75.0 91.4

SVM 81.4 75.0 85.7
RVM 84.7 79.2 88.6

TABLE III. DISTRIBUTION OF SELECTED FEATURES USED WITH THE
MANUALLY-SELECTED AND FULLY-AUTOMATED SYSTEMS DIVIDED BY

FEATURE SET, BRAIN REGION, FREQUENCY BAND, AND MONTAGE.

Systems
Manual wICA-AAR

NUMBER OF FEATURES PER FEATURE SET
spectral power 10 14

coherence 3 4
modulation 11 6

NUMBER OF FEATURES PER BRAIN REGION
frontal 8 9
central 4 3

temporal 3 6
parietal 3 4
occipital 6 2

NUMBER OF FEATURES PER FREQUENCY BAND
delta 6 7
theta 5 4
alpha 3 4
beta 10 9

NUMBER OF FEATURES FROM VIRTUAL CHANNELS
interhemispheric 5 6

From the manually-selected epochs, the amplitude modulation
features are selected most often, followed by the spectral power
based features. With the automated system, on the other hand,
the spectral power features dominate, thus suggesting that am-
plitude modulation features may be sensitive to wICA artefact
removal. Relative to brain regions, similar results are obtained
with the two systems, with the exception of the temporal and
occipital regions. For the manually-selected epochs, 3 of the
24 top features belonged to the temporal regions, whereas 6
belonged to the occipital region. With the wICA-processed
epochs, on the other hand, this distribution was reversed with
6 of the top features belonging to the temporal region and
only 2 to the occipital region. Regarding frequency bands
and electrode montage (original versus virtual bipolar), the
two systems obtained similar distributions and no effect could
be observed from the automated artefact removal procedure.
Combined, these findings suggest that a fully automated AD
diagnostic system can be implemented with accuracies inline
with those obtained with a semi-automated system relying on
human intervention.

IV. CONCLUSION

This paper has proposed a fully-automated EEG-based
AD diagnosis system based on automatic artefact removal,
automated feature selection, and relevance vector machine
(RVM) based classification. Experimental results show the
proposed system outperforming a benchmark algorithm based
on support vector machines (SVM) and manually-selected
artefact-free EEG epochs in terms of diagnostic accuracy and
sensitivity. The proposed automated RVM-based system is also
shown to outperform an automated SVM-based variant with
the advantage of providing class membership probabilities. By
providing such richer pool of information to clinicians, more
accurate and earlier Alzheimer’s disease assessments may be
enabled, as well as disease progression monitoring.
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A closer look at the selected features from Ta-
ble I shows that three features show up in both the
manually-selected as well as wICA-processed top feature
pool, namely: “O1 O2 theta pwr”, “PZ alpha pwr”, and
“F3 F4 delta cohe mag”, thus showing the robustness of the
bipolar O1-O2 and F3-F4 signals, along with the PZ alpha
subband to EEG artefacts. Table III shows the distribution
of the selected features across the different feature classes,
brain regions, frequency subbands, and electrode montages.

TABLE II. PERFORMANCE COMPARISON OF SEMI-AUTOMATED
BENCHMARK AND FULLY-AUTOMATED AD DIAGNOSTIC SYSTEMS.

System Accuracy (%) Sensitivity (%) Specificity (%)
Benchmark 84.7 75.0 91.4

SVM 81.4 75.0 85.7
RVM 84.7 79.2 88.6

TABLE III. DISTRIBUTION OF SELECTED FEATURES USED WITH THE
MANUALLY-SELECTED AND FULLY-AUTOMATED SYSTEMS DIVIDED BY

FEATURE SET, BRAIN REGION, FREQUENCY BAND, AND MONTAGE.

Systems
Manual wICA-AAR

NUMBER OF FEATURES PER FEATURE SET
spectral power 10 14

coherence 3 4
modulation 11 6

NUMBER OF FEATURES PER BRAIN REGION
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central 4 3

temporal 3 6
parietal 3 4
occipital 6 2

NUMBER OF FEATURES PER FREQUENCY BAND
delta 6 7
theta 5 4
alpha 3 4
beta 10 9

NUMBER OF FEATURES FROM VIRTUAL CHANNELS
interhemispheric 5 6

From the manually-selected epochs, the amplitude modulation
features are selected most often, followed by the spectral power
based features. With the automated system, on the other hand,
the spectral power features dominate, thus suggesting that am-
plitude modulation features may be sensitive to wICA artefact
removal. Relative to brain regions, similar results are obtained
with the two systems, with the exception of the temporal and
occipital regions. For the manually-selected epochs, 3 of the
24 top features belonged to the temporal regions, whereas 6
belonged to the occipital region. With the wICA-processed
epochs, on the other hand, this distribution was reversed with
6 of the top features belonging to the temporal region and
only 2 to the occipital region. Regarding frequency bands
and electrode montage (original versus virtual bipolar), the
two systems obtained similar distributions and no effect could
be observed from the automated artefact removal procedure.
Combined, these findings suggest that a fully automated AD
diagnostic system can be implemented with accuracies inline
with those obtained with a semi-automated system relying on
human intervention.

IV. CONCLUSION

This paper has proposed a fully-automated EEG-based
AD diagnosis system based on automatic artefact removal,
automated feature selection, and relevance vector machine
(RVM) based classification. Experimental results show the
proposed system outperforming a benchmark algorithm based
on support vector machines (SVM) and manually-selected
artefact-free EEG epochs in terms of diagnostic accuracy and
sensitivity. The proposed automated RVM-based system is also
shown to outperform an automated SVM-based variant with
the advantage of providing class membership probabilities. By
providing such richer pool of information to clinicians, more
accurate and earlier Alzheimer’s disease assessments may be
enabled, as well as disease progression monitoring.



Experimental	  Results	  

•  35	  AD,	  24	  C	  
•  Benchmark:	  visual	  inspec=on	  +	  SVM	  

•  Advantages	  over	  visual	  inspec=on:	  	  
–  Improved	  sensi=vity	  rela=ve	  to	  benchmark	  
–  Informa=on	  from	  frontal	  electrodes	  kept	  
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A closer look at the selected features from Ta-
ble I shows that three features show up in both the
manually-selected as well as wICA-processed top feature
pool, namely: “O1 O2 theta pwr”, “PZ alpha pwr”, and
“F3 F4 delta cohe mag”, thus showing the robustness of the
bipolar O1-O2 and F3-F4 signals, along with the PZ alpha
subband to EEG artefacts. Table III shows the distribution
of the selected features across the different feature classes,
brain regions, frequency subbands, and electrode montages.

TABLE II. PERFORMANCE COMPARISON OF SEMI-AUTOMATED
BENCHMARK AND FULLY-AUTOMATED AD DIAGNOSTIC SYSTEMS.

System Accuracy (%) Sensitivity (%) Specificity (%)
Benchmark 84.7 75.0 91.4

SVM 81.4 75.0 85.7
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From the manually-selected epochs, the amplitude modulation
features are selected most often, followed by the spectral power
based features. With the automated system, on the other hand,
the spectral power features dominate, thus suggesting that am-
plitude modulation features may be sensitive to wICA artefact
removal. Relative to brain regions, similar results are obtained
with the two systems, with the exception of the temporal and
occipital regions. For the manually-selected epochs, 3 of the
24 top features belonged to the temporal regions, whereas 6
belonged to the occipital region. With the wICA-processed
epochs, on the other hand, this distribution was reversed with
6 of the top features belonging to the temporal region and
only 2 to the occipital region. Regarding frequency bands
and electrode montage (original versus virtual bipolar), the
two systems obtained similar distributions and no effect could
be observed from the automated artefact removal procedure.
Combined, these findings suggest that a fully automated AD
diagnostic system can be implemented with accuracies inline
with those obtained with a semi-automated system relying on
human intervention.

IV. CONCLUSION

This paper has proposed a fully-automated EEG-based
AD diagnosis system based on automatic artefact removal,
automated feature selection, and relevance vector machine
(RVM) based classification. Experimental results show the
proposed system outperforming a benchmark algorithm based
on support vector machines (SVM) and manually-selected
artefact-free EEG epochs in terms of diagnostic accuracy and
sensitivity. The proposed automated RVM-based system is also
shown to outperform an automated SVM-based variant with
the advantage of providing class membership probabilities. By
providing such richer pool of information to clinicians, more
accurate and earlier Alzheimer’s disease assessments may be
enabled, as well as disease progression monitoring.
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Res=ng-‐Awake	  vs	  Mental	  Ac=vity	  
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Hippocampal	  Ac=va=on	  

•  Working	  memory	  
•  ERD/ERS	  
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9

Figure 4. Average topographical maps of the ERD% for NS, MCI and AD groups (from top to
bottom) on alpha band and 175-325ms time interval, during execution of the 2-back task (match trials).
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Mul=modal	  Neuroimaging	  
•  EEG	  +	  fNIRS	  (near-‐infrared	  
spectroscopy)	  

•  Areas	  coincide	  with	  alpha	  
modula=on	  features	  
– Neurovascular	  coupling	  
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Conclusions	  

•  Alzheimer’s	  disease	  quickly	  becoming	  an	  epidemic	  
•  New	  biomarkers	  are	  being	  developed,	  neuro-‐
imaging	  is	  playing	  an	  important	  role	  
– EEG	  stands	  out	  for	  its	  poten$al,	  lower	  cost,	  portability	  

•  Amplitude	  modula=on	  insights	  à	  new	  features	  for	  
diagnosis	  and	  disease	  progression	  monitoring	  

•  Mul=modal	  solu=ons	  à	  new	  biomarkers	  
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Ques=ons?	  

ʺ″If the brain were so simple we could understand it, 
we would be so simple we couldn’tʺ″  

‐ Lyall Watson 
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