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ABSTRACT

Non-intrusive speech intelligibility metrics are based solely on the
corrupted speech information and a prior model of the speech sig-
nal in a given representation. As such, any sources of variability
not taken into account by the model will affect the metric’s per-
formance. In this paper, we investigate two sources of variability
in the auditory-inspired model used by the speech-to-reverberation
modulation energy ratio (SRMR) metric, namely speech content and
pitch, and propose two updates that aim to reduce the variability
caused by these sources. First, we limited the dynamic range of the
energies in the modulation spectrum bands in order to reduce the
effect of speech content and speaker variability. Second, the range
of the modulation filter bank was modified to reduce the variabil-
ity due to pitch. Experimental results show that the updated met-
ric presents higher performance and lower variability relative to the
original SRMR when assessing speech intelligibility in noisy and
reverberant environments, as well as outperforms several standard
intrusive and non-intrusive benchmark metrics.

Index Terms— Speech intelligibility, objective metrics, modu-
lation spectrum

1. INTRODUCTION

Room acoustics, particularly reverberation and noise, severely de-
grade the performance of far-field speech technologies, such as
speech recognition. For hearing aid and cochlear implant users,
in turn, reverberation and noise alter speech temporal envelopes,
thus reducing intelligibility to unacceptable levels. To overcome
these issues, reverberation and noise suppression (i.e., speech en-
hancement) algorithms are often employed. In order to gauge the
effects of speech enhancement on noisy and reverberant speech, al-
gorithm developers typically rely on subjective listening tests where
listeners either rate the quality or are asked to transcribe the speech
signal heard. In the latter scenario, correctly identified words are
commonly used as a measure of speech intelligibility.

Subjective listening tests, however, despite their accuracy and
reliability if carefully crafted, are expensive, laborious and time-
intensive, as well as unsuitable for real-time monitoring purposes.
As such, objective metrics have been the focus of recent research
with so-called intrusive and non-intrusive models being developed
based on the need, or not, of a clean reference signal, respectively.
While a number of methods and algorithms have been developed for
telephone speech, only a handful have been proposed for reverber-
ant speech. In [1, 2, 3], several metrics were tested assuming both
normal and impaired listeners (e.g., cochlear implantees). In these
tests, a non-intrusive measure called speech-to-reverberation mod-
ulation energy ratio (SRMR) stood out as a reliable candidate [4].
Variants of the SRMR measure have since been proposed for blind

reverberation time and direct-to-reverberant energy ratio estimation
[5].

Despite its high correlation with subjective quality and intelli-
gibility ratings, the SRMR metric has been shown to be sensitive
to inter- and intra-speaker variability [6, 7]. This limitation arises
from the fact that the measure does not rely on a reference signal,
thus is sensitive to prior assumptions made by the model. In this
case, the main assumption is that room acoustics effects show up
in higher speech envelope frequencies (termed modulation frequen-
cies) whereas speech components show up in lower modulation fre-
quency regions ( 16 Hz). In this paper, we investigate two sources
of variability in the auditory-inspired SRMR model, namely pitch
and speech content, and propose two updates to mitigate this vari-
ability. Experimental results show significant improvements with
the updated metric relative to its original counterpart, both in terms
of increased correlation with subjective ratings, as well as reduced
variability in estimation errors.

The remainder of this paper is organized as follows. Section 2
describes the original SRMR metric, its limitations, as well as the
proposed updates. Sections 3-5 present the experimental setup, re-
sults, and conclusions, respectively.

2. PROPOSED UPDATES TO THE SRMR METRIC

Here, we describe the original SRMR implementation, present two
sources of model variability, and propose updates to reduce the vari-
ability of intelligibility prediction errors.

2.1. SRMR: Original implementation

It is well known that the modulation envelopes of a speech signal
provide useful cues for objective speech quality and intelligibility
estimation. The modulation energy of clean anechoic speech is typ-
ically concentrated in lower frequencies, from 2-20 Hz, with a spec-
tral peak at 4 Hz [8]. Speech under the effects of reverberation and/or
noise, in turn, will exhibit temporal envelopes with higher frequency
components [5]. The SRMR metric explores this effect and relies on
the ratio between the energy in higher to lower modulation frequen-
cies to predict speech intelligibility [4].

The auditory-inspired modulation spectrum representation used
by SRMR is computed as follows. First, the input speech signal
is decomposed in 23 acoustic channels by a gammatone filterbank
with filter center frequencies ranging from 125 Hz to approximately
half the sampling frequency, and with bandwidths characterized by
the equivalent rectangular bandwidth, ERB [9]. Each acoustic chan-
nel has its temporal envelope extracted (via the Hilbert transform).
In order to emulate frequency selectivity in the modulation domain
[10], each envelope is decomposed into eight overlapping modula-
tion bands with center frequencies logarithmically spaced between
4 � 128 Hz. Modulation spectral energy is then computed for each



of the filtered envelopes (corresponding to modulation band/acoustic
band pairs) as the squared magnitude of its discrete Fourier trans-
form for 256 ms frames with 32 ms overlap. Lastly, the SRMR
value is computed as the ratio of the average modulation energy con-
tent (over all frames) in the first four modulation bands (3� 20 Hz)
to the average modulation energy content available in the last four
modulation bands (20� 160 Hz).

2.2. Investigating sources of SRMR variability: pitch and
speech content

Previous studies have shown that the energy envelope of the speech
signal exhibits a structure with periodicity equal to its fundamental
frequency [11]. While these results were obtained using full-band
speech envelopes, it is suspected that pitch effects are also present
in the acoustic subband model used by the SRMR metric. Secondly,
subband based modulation features have been used in the past for
speech recognition [12], thus suggesting that the model used by the
SRMR metric may be sensitive to speech content, such as different
phonemes. While the SRMR metric utilizes significantly larger anal-
ysis windows (256 ms against 32 ms zero-padded windows in [12])
to reduce such speech-content sensitivity, it is suspected that some
residual dependency remains.

To investigate the effect of speech content and pitch variabil-
ity on the SRMR metric, we processed clean speech data from two
different databases. The first database consisted of consonant-vowel
pairs (CVs), and contained 1,728 samples [13]. Four talkers (2 males
and 2 females) recorded 8 tokens for each of 18 consonants (frica-
tives: s, z, S, Z, f, v, T, ð; stops: p, t, k, b, d, g,; nasals m, n; af-
fricates: Ù, Ã) in 3 vowel contexts (A, i, and u). To evaluate the
variability over sentences we used a second database, based on a
subset of the TIMIT corpus consisting of 160 anechoic, noise-free
sentence recordings from 8 male and 8 female native English speak-
ers [14]. Each speaker recorded 10 phonetically rich sentences. Of
the 160 samples used, 130 were recordings of different sentences.
Both databases comprised of 16-bit single channel files sampled at
16 kHz, and were downsampled to 8 kHz prior to computation of the
SRMR metric.

Figures 1 (a) and (b) depict the periodograms of the envelopes
of the first acoustic subband from sentences uttered by a male and a
female speaker, respectively. As can be seen, the envelope has a first
peak (after 0 Hz) which coincides with the speakers pitch. Over the
abovementioned dataset, we found that the correlation between this
first peak frequency and the speakers fundamental frequency was
greater than 0.8 for 13 of the 23 subbands and greater than 0.6 for
18 of the 23 subbands. Since the SRMR metric analyzes modulation
spectral content up to 128 Hz with modulation filter bandwidths in-
creasing with frequency, it is expected that fundamental frequency
effects will show up in such higher modulation bands.

To show the effect of speech’s phonetical content on SRMR, we
grouped the samples from the CV pairs database into two different
categories: by vowel and by manner of articulation. Figure 2 shows
the SRMR means (dark grey) as the bar heights and standard devia-
tions, as error bars, for each group. There is a large difference in the
means for different vowels, especially between /u/ and the other two
vowels. Nasals and affricates also tend to have lower SRMR scores
than fricatives and stops. The intra-group relative standard devia-
tion (RSD%, absolute standard deviation over mean in percentage)
is between 66 and 100%.
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Fig. 1. Periodograms of the envelopes of the first acoustic subband
from sentences uttered by (a) a male and (b) a female speaker.

2.3. Proposed updates: Development of SRMRnorm

In order to reduce the effects of pitch and speech content on the
SRMR metric, we propose two updates. First, to avoid the effect of
pitch, we experimented reducing the modulation frequency ranges
used by SRMR. We kept the center frequency of the first filter in the
modulation filterbank at 4 Hz and varied the frequency of the last
filter, starting at 30 Hz and going up to 100 Hz in 5 Hz increments.
Center frequencies for the 6 filters in between were logarithmically
spaced as in the original filterbank. In our experiments, we noticed
that reducing the modulation frequency range from 4–128 Hz to 4–
40 Hz resulted in a reduction of the correlation between SRMR and
pitch from 0.76 to -0.05.

By observing the temporal progression of the energy in the mod-
ulation frequency bands of clean CVs and sentences, we confirmed
that there were intra- and interspeaker differences in the ratio be-
tween lower and higher bands, as pointed by the high RSD% values
found in the two databases. In order to reduce this difference, we
propose as a second update to SRMR an energy thresholding method
similar to the one proposed in [12]. The objective is to truncate ex-
tremely low energies, which lead to high ratios due to the division
done in SRMR, and also limit the modulation energy dynamic range.
In our modulation energy limitation scheme, we first compute the en-
ergy values for each of the acoustic and modulation frequencies in
all frames, and then compute the average peak value, given by:

¯Epeak = max

j,fb
(

1

M

MX

m=1

Ej(m, fb)) (1)

where m corresponds to the frame index, fb to the modulation fre-
quency band index, j to the acoustic band index, and Ej(m, fb) is
the energy in the j-th acoustic band and fb-th modulation frequency
band for the m-th frame. This average peak value is then used as an
upper bound for the modulation energy in each band for all frames.
Finally, we set the value ¯Epeak � 30dB as the modulation energy
lower bound, to truncate extremely low energies. In Figure 2, the
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Fig. 2. Variability of the SRMR and SRMRnorm measures for the CV
pairs.

hatched bars show the means and standard deviations of the SRMR
metric after employing this energy limitation scheme. We can notice
that the means of different CV groups are closer, and that the intra-
group variability has also decreased to between 48% to 67% (against
66 to 100% in the original implementation).

In the next session, we show that the updated metric, termed
SRMRnorm, leads to improved speech intelligibility prediction and
exhibits lower variability when compared to the original SRMR im-
plementation.

3. EXPERIMENTAL SETUP

Here, we describe the database used to test the proposed updates, the
performance measures used, as well as the benchmark algorithms.

3.1. Speech intelligibility database

In order to evaluate the effect of the proposed updates on objective
speech intelligibility prediction, subjective intelligibility tests were
performed with a small group of normal hearing participants. The
sentence stimuli were based on the IEEE sentence corpus [15]. The
corpus contains sentences with 7-12 words, organized in 72 lists of
10 sentences each. The sentences were produced by a male speaker
and recorded in anechoic conditions. A total of 18 distortion condi-
tions were used. The reverberant stimuli were generated by convolv-
ing recorded room impulse responses (RIR) obtained experimen-
tally in three different rooms. For reverberation time (RT) values
of 0.3 s, 0.6 s and 0.8 s, RIRs were obtained on a rectangular rever-
berant room (length 10.06 m, width 6.65 m, height 3.4 m) which had
its reverberation characteristics varied by hanging absorptive pan-
els on the walls [16]. For RT = 1.0 s, a RIR obtained on a 5.5 m
⇥ 4.5 m ⇥ 3.1 m room was used [17]. Finally, the RIR used for
RT = 1.4 s was recorded in a 40 m3 chamber (Tyndall Bruce Monu-
ment stimuli from the Open Acoustic Impulse response library [18]).
Speech-shaped noise (SSN) and babble noise (from the NOISEX-92
database [19]) were added to the anechoic signals at −5 dB, 0 dB,
5 dB and 10 dB SNR levels to generate the noisy conditions. Addi-
tionally, SSN at 5 dB and 10 dB was added also to reverberant signals
to generate the reverberation + noise stimuli. For the reverberation +

noise condition, the reference signal used for the SNR computation
was the reverberant signal, as in [20].

Ten participants, aged 19 to 39 years (average 24.7 years, stan-
dard deviation 5.83 years), were recruited. They were either native
or fluent English speakers, had no history of hearing loss or hear-
ing disorders, and had never been exposed to the sentences in the
database. All participants were paid for their participation. Tests
were performed in a quiet room. Sentences were presented via head-
phones (Sennheiser HD 600, connected to a Focusrite Saffire Pro 14
sound card) to a single ear, chosen at random. Volume was set to
a comfortable level by the participant during a 10-sentence training
period which comprised material different from testing.

Sentence lists were presented at a random order, and sentence
order within each list was also randomized. Participants were asked
to listen to the sentences, one at a time, and type in the words they
were able to understand. Each sentence could only be listened to
once; once presented, the participant was asked by the software to
type in the words he understood (not necessarily in the same order as
he heard), and could then press a key to start the next sentence. Par-
ticipants were allowed to take a 10 minute break after listening to the
first 9 sentence lists. Intelligibility was measured as the percentage
of correct words typed for each sentence list. Simple misspellings
(cases where there was no ambiguity between the typed word and
another word) were corrected by hand before computing intelligibil-
ity ratings.

3.2. Performance assessment

The objective intelligibility estimates were compared to the per-
condition averages of the intelligibility scores found during subjec-
tive listening tests. Averages were computed for all 20 sentences
for each participant in each condition, and then averaged over all
participants. A total of 18 conditions were considered: one clean,
8 noise-only (4 SNR levels, 2 noise types), 5 reverberation-only,
and 4 noise-plus-reverberation. As performance criteria, we con-
sidered Pearson’s linear correlation (⇢p), Spearman rank correlation
(⇢sp), and Pearson’s correlation after a sigmoidal mapping between
predicted and true scores (⇢sig , motivated by Plomp’s work [21]).
Additionally, based on this sigmoidal mapping, we also compute the
root mean square error (RMSE) between predicted and true scores
for all the tested conditions.

3.3. Benchmark metrics

As benchmark metrics, we used 9 different speech quality and intel-
ligibility metrics, five of them being intrusive and four non-intrusive.
A complete description of the benchmark algorithms is beyond the
scope of this paper and the interested readers are referred to [22] and
to the references given hereafter for more details. The Perceptual
Evaluation of Speech Quality (PESQ) [23] and Perceptual Objective
Listening Quality Assessment (POLQA) [24] are both ITU-T stan-
dards for intrusive speech quality measurement. oPESQ [1], in turn,
is an adaptation of PESQ for use with reverberant speech. NCM [25]
and STOI [26] are intrusive speech intelligibility metrics. ModA
[27] is a non-intrusive speech intelligibility metric originally devel-
oped for cochlear implant users, and is also based on the modulation
spectrum of a speech signal. ANIQUE+ [28], an ANSI standard,
is a non-intrusive speech quality measure whose internal model also
considers modulation spectrum features. Finally, P.563 [29] is a non-
intrusive objective speech quality metric for narrow-band telephony.



Table 1. Performance results for the SRMR-based and benchmark
metrics.

Metric ⇢p ⇢sp ⇢sig RSD% RMSE

SRMR-based metrics

SRMR 0.68 0.86 0.78 0.22 15.45
SRMRnorm 0.77 0.93 0.92 0.09 9.48

Benchmark metrics

POLQA 0.68 0.94 0.94 0.09 7.81
NCM 0.57 0.72 0.53 0.15 22.98
CSII 0.51 0.71 0.46 0.26 23.80
STOI 0.44 0.77 0.36 0.08 23.24
PESQ 0.64 0.90 0.92 0.08 10.05
oPESQ 0.89 0.88 0.92 0.09 10.12

ANIQUE+ 0.81 0.88 0.91 0.32 11.68
ModA 0.81 0.86 0.86 0.15 15.95
P.563 0.38 0.33 0.34 0.24 28.14

4. EXPERIMENTAL RESULTS

The performance results for SRMR, SRMRnorm, and the benchmark
metrics are shown in Table 1. As expected from previous exper-
iments, the original SRMR showed high variability, especially in
cases with high intelligibility (which are the cases with lower vari-
ability between listeners). This is probably related to the speech
content variability as shown in our CV experiments.

The value reported for SRMRnorm corresponds to the modula-
tion frequency range 4-40 Hz (which is the one that yielded best
results). The updated metric shows a significant improvement when
compared to SRMR, increasing all the correlations while decreasing
the observed variability. Results are in line with POLQA, a state-of-
the-art intrusive metric, even if we compare per-condition variabil-
ity. The non-intrusive metric ANIQUE+, on the other hand, showed
higher variability than both.

NCM, CSII, and STOI, which are specifically designed as
speech intelligibility metrics, showed poorer performance than other
intrusive metrics, even though they have been shown to perform well
with noisy speech. As expected, oPESQ showed an improvement
in linear correlation when compared to the standard PESQ measure.
P.563 showed the poorest performance of all metrics. Figures 3
(a) and (b) depict the subjective versus objective scatter plots of
the SRMR and SRMRnorm outputs, respectively, for each of the
noise-only, reverberation-only, and noise-plus-reverberation condi-
tions, where error bars in the x-axis are the per-condition standard
deviations, and y-axis error bars (shown only in Figure 3 (a)) the
subjective standard deviations. Values were normalized between 0
and 1, where 1 corresponds to the maximum value of the metric
obtained in the experiments, corresponding to the clean case. As can
be seen, the variability of the SRMRnorm outputs are significantly
lower than that of SRMR.

5. CONCLUSIONS

In this paper, we proposed two updates to the SRMR metric aim-
ing to reduce its variability related to pitch and speech content: a
modulation energy thresholding scheme was employed to reduce
speech content variability, while the modulation filterbank band-
width was reduced to mitigate the effect of pitch. We assessed
its performance by comparing its predictions to subjective speech
intelligibility scores under noisy and reverberant conditions. The
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Fig. 3. Scatterplots for SRMR (a) and SRMRnorm (b).

updated metric, termed SRMRnorm, was shown to have performance
in line with state-of-the-art speech quality and intelligibility metrics,
including intrusive ones, with correlations as high as 0.92.
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