The effects of whispered speech on state-of-the-art voice based biometrics systems Milton Sarria-Paja and Tiago H. Falk

relevant speaker identity and gender information. Goal: Improve system performance for whispered speech without affecting per-

formance for normal speech.

Quantify the effects of whispered speech on a standard SV system.

Institut National de la Recherche Scientifique (INRS-EMT), University of Quebec, Montréal, Quebec, Canada

EXPERIMENTAL SETUP

Databases

- Only normal speech
- **TIMIT database:** 630 speakers (438 Male, 192 Female). Whispered and normal speech
- **wTIMIT database:** 48 speakers (24 Male, 24 Female).
- CHAINS Speech Corpus: 36 speakers (20 Male, 16 Female).

Development: 476 speakers (462 from TIMIT, 14 from wTIMIT), Clients: 160 speakers (100 from TIMIT, 36 from CHAINS, 24 from wTIMIT).

Features

Mel-frequency cepstral coefficients (MFC) Weighted Instantaneous Frequencies (WIFs)

Speech signal decomposition in bandpass channels for estimation of envelope

BASELINE RESULTS

Train/Test mismatch effects

and instantaneous frequencies

ЛF	CC	WIF		
m	Whsp	Norm	Whsp	
8	25.83	2.50	29.17	
3	27.50	1.60	26.35	

From the DET curves and tabulated EER values, it can be observed that significant performance degradation occurs in mismatch conditions. There is a gap in performance between normal and whispered speech higher than 20% for all cases.

Addition of whispered speech during training and enrollment seems to highly affect current state-of-the-art SV systems. For the classical GMM based system that was not the case when combined with the use of AM-FM based features. Such finding suggests that the phase and envelope of bandpass signals can contain highly discriminative speaker specific information during normal and whispered speech.

HOW TO ADDRESS THIS PROBLEM?

Case 1: Include whispered speech during T matrix estimation.

	MF Norm	CC Whsp	W Norm	/IF Whsp	
	GMM + MAP adaptation				
Case 2	6.01	10.00	2.19	2.70	
	PLDA based system				
Case 1	4.06	19.15	1.86	17.68	
Case 2	5.63	10.35	4.00	8.40	
Case 3	6.56	7.77	4.09	5.85	

- GMM based system: Combined with AM-FM based features and in presence of whispered speech it seems to be more robust and is able to maintain the error rate for the two speaking styles below 3%.
- PLDA + i-vector based system: Highly sensitive to the addition of new data even if whispered speech features were included during total variability matrix estimation.