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Abstract— Affective states are typically characterized using
spectral power information obtained from electroencephalogra-
phy (EEG) data collected over specific brain regions. However,
while experiencing a complex emotional audio-video stimuli,
brain networks transfer information in a highly interactive
manner. To characterize this information, we propose using
graph theoretical features. Towards this end, first, we estab-
lished graph theoretical features as meaningful correlates of
affective states through Pearson correlation. Then we compared
the classification performance of these features with that of con-
ventional spectral power features where percentage increases in
classification performance of 7% and 11% were found in arousal
and valence, respectively. Moreover, feature level fusion was
explored and resulted in better performance as compared to
the feature sets alone thus, highlighting the complementarity
of EEG graph based features and spectral powers. Overall it is
hoped that this study will enhance affective state evaluation via
passive brain computer interfaces, thus leading to a plethora of
applications such as user experience perception modelling and
affective indexing/tagging of videos, to name a few.

I. INTRODUCTION

Burgeoning research in the field of passive brain computer
interfaces has led to effortless characterization of an individ-
ual’s affective states. Affective state characterization forms
an integral part of neuromarketing, affective video indexing
and, more recently, user experience (UX) or quality-of-
experience (QoE) perception modelling. As such any video
on demand service provider (e.g., Youtube and Netflix) needs
to enhance users’ QoE in order to gain competitive edge
and succeed. Thus, during the last decade researchers have
focussed on developing various QoE quantification schemes.
However, inclusion of information from users’ affective and
cognitive states into these schemes could hugely increase
their efficiency, as users’ states widely impact QoE percep-
tion formation processes. Towards this end, affective state
characterization through passive BCIs could aid in building
enhanced user-adaptive QoE quantification schemes.

Conventionally, passive BCIs have utilised electroen-
cephalography (EEG) to extract neurophysiological corre-
lates of users’ affective states. Generally, the spectral power
features derived from several frequency bands, such as delta
(δ: 1-4Hz), theta (θ: 4-8Hz), alpha (α: 8-13Hz), beta (β:
13-30Hz) and gamma (γ: 30-50Hz), are used as neurophys-
iological correlates of emotional activity [1]. Such features
encode brain activity over a specific brain region. However,
during the time course of watching a music video, several
parts of the brain are activated to process and integrate the
auditory and visual streams, as well as to evaluate emotional
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content via attentional and context updating mechanisms.
Thus, affective state characterization comprises a complex
flow and interplay of information between brain regions that
may span different EEG frequency bands.

The flow of information while watching an emotional
music video clip can be represented by the model shown in
Figure 1. The model consists of a sensory processing block
and an affect-cognition processing block. The specialised
sensory information is processed in a segregated manner in
densely interconnected brain regions of auditory and visual
cortices. The processed information is then evaluated through
a highly interactive and integrated interplay of informa-
tion between affective and cognitive neuronal networks [2].
Through top-down effects, these affective-cognitive networks
can further influence the analysis, processing, and integration
of the multiple sensory streams, thus closing the information
flow loop. Within this information flow model, the affect-
cognition block plays a crucial role as it not only modulates
integrated processing of information, but also influences
its segregated processing through top-down effects. These
properties of neuronal networks can be quantified using
features obtained from graph-theoretical analysis of brain
activity [3]. As such, it is expected that improved affective
state characterization can be achieved by mapping the flow of
information through EEG channels which encode activity of
various neuronal networks involved in affect processing. In
this paper, we compare the efficiency of graph theoretical
features obtained from EEG data with the conventional
spectral power features, to characterize and classify user
affective states.

Fig. 1: Information flow model for affect laden audio-video
stimuli



The remainder of this paper is organized as follows:
section II show the methods and materials used in our
study. Section III and IV show the results and discussion,
respectively. Lastly, conlusions are drawn in section V.

II. MATERIALS AND METHODS

A. Database for Emotion Analysis using Physiological sig-
nals (DEAP)

We obtained the pre-processed EEG data along with
users’ subjective affective ratings from the publicly-available
“database for emotion analysis using physiological signals
(DEAP)” [4]. The database consists of EEG recordings
from thirty two participants (50% females, average age =
26.9 years) while they experienced forty, one-minute long,
music videos with emotional content. The EEG data was
acquired using a Biosemi ActiveTwo system (Amsterdam,
Netherlands), at a sampling frequency of 512 Hz, while
placing thirty two electrodes according to international 10-20
system over the scalp. The data was then pre-processed by
common referencing, downsampling to 128 Hz, band-pass
filtering between 4-45 Hz, and eye blink artifact removal
via independent component analysis. For the subjective data,
following the presentation of each music video, participants
rated their valence and arousal on a discrete 9-point scale
using the self assessment manikins (SAM).

B. Feature Extraction

As explained earlier, the neuronal affect processing is a
highly interactive brain activity. Therefore, to encode such
information various measures have been proposed in the
past, one such measure is the magnitude squared coherence
(MSC). We have used MSC as measure of synchrony be-
tween two EEG electrodes. This measure was extracted for
all the pairs of electrodes for different EEG bands, namely,
theta (θ = 4 − 8 Hz), low alpha (l − α = 8 − 10 Hz), high
alpha (h−α = 10−12 Hz), alpha (α = 8−12 Hz), low beta
(l−β = 12− 18 Hz), mid beta (m−β = 18− 24 Hz), high
beta (h− β = 24− 30 Hz), beta(β = 12 − 30 Hz), gamma
(γ = 30− 45 Hz) and full (full = 4− 45 Hz) bands.

Adjacency matrices (or graphs) were created by thresh-
olding the MSC values between 0.1, 0.2,...0.9, as described
in [3]. Following that, graph theoretical features such as
clustering coefficient (C) and local efficiency (El) were
computed, which encode information regarding segregation
or local properties of graphs. Characteristic path length (L)
and global efficiency (Eg), in turn, were calculated to encode
information regarding integration or global properties of
graphs. We also extracted the small-worldness (S) properties
of the graphs, as human brain networks have been proposed
to have evolved a balance between segregation and integra-
tion properties resulting in so-called small-world networks
[5]. This resulted in 5 graph features per band per threshold.
Due to space limitations, an in-depth description of the
features is not possible and the interested reader is referred to
[3] for complete details. Moreover, for comparison, we also
extracted spectral power features for θ, α, β and γ bands at

each electrode along with asymmetry features for each band
as computed in [4] resulting in 184 features.

C. Neurophysiological Correlates of Affective States
In order to quantify the relationship between the sub-

jective ratings and all the graph-theoretic metrics, Pearson
correlation coefficients were used. Correlation coefficients
were computed at each of the nine investigated thresholds
(0.1, . . . , 0.9) however, only the thresholds at which signifi-
cance was achieved were used in the following classification
analyses. Furthermore, to investigate if the EEG measures
could be used to classify the subjective ratings into ‘high’ or
‘low’ categories, hypothesis testing via an unpaired t-test was
used. For this, the valence and arousal ratings, which were
scored greater than or equal to five were categorized as ‘high’
and those below five as ‘low’, and the hypothesis testing was
done. These results helped establish the significance of graph
theoretical features in characterising affective states.

D. Affective State Classification
Following correlation analysis, the dataset was split into

a development and validation set. The development set con-
sisted of 5 ‘high’ and 5 ‘low’ randomly selected points from
each subject, resulting in 320 samples. The remaining 960
samples were used in the validation set. The development
set was used to rank the features using minimum redun-
dancy maximum relevance (mRMR) algorithm [6], for three
different feature sets consisting of: (a) only spectral power
and asymmetry features, (b) only graph features and (c) all
features together. Then the ranked features were used to
classify users’ affective states using the validation set, where
a feature was introduced in each step and the classification
accuracy was computed. The classification was done using
leave-one-sample-out cross-validation per subject, similar to
the procedure adopted in [4]. For this, we used support vector
machine (SVM) classifier using radial basis function (RBF)
with C = 1.0 and γ = 0.01, which was implemented using
the Scikit-learn library for Python [7].

III. RESULTS

Table I reports the highest significant correlations obtained
for each measure. It was observed that significance was only
attained at thresholds between 0.2 and 0.5, thus resulting
in 200 features which were used for classification analyses.
Also, using t-test it was found that all measures reported in
Table I were able to significantly differentiate between the
two category groups, except those indicated by an asterisk.
In order to visualize the significant differences between
the ‘high’ and ‘low’ categories, as well as the interplay
between the integration and segregation modules, Figure 2
depicts scatter-plots of El vs. Eg computed from the MSC
connectivity measure with a threshold of 0.4 for arousal.
The plots show the average metric values, as well as their
standard error bars. Moreover, the classification results for
valence and arousal are shown graphically in Figures 3 (a-b),
respectively. Table II, in turn reports the maximum accuracy
achieved using each feature set along with the number of top
features needed to reach that level of performance.



TABLE I: Significant (p < 0.05) correlations between
subjective ratings (‘Val’ - Valence, ‘Aro’ - Arousal) and EEG
graph-theoretic measures. Superscripts in the table indicate
the threshold at which highest coefficient was attained. A
dash (−) indicates that significant correlations could not be
found at any of the investigated thresholds. An asterisk, in
turn, indicates a measure that obtained insignificant differ-
ences between low and high categories.

Subjective L Eg C El S
Dimension

(MSC Band)

Val (l − α) −0.453 – – 0.354 –
Val (h− α) −0.483 0.455 0.412 0.415 0.434

Val (α) −0.484 0.395 0.385 0.415 0.373

Val (l − β) −0.413 0.445 0.414 0.414 0.343

Val (m− β) – – 0.323 0.363 –
Val (β) −0.363 0.324 0.324 0.374 –
Val (γ) – 0.365 – – –

Aro (l − θ) 0.432 −0.402 −0.323 −0.353 −0.362

Aro (l − α) −0.382∗ 0.382∗ 0.402 0.392∗ 0.434

Aro (l − β) −0.442 0.472 0.462 0.402 0.503

Aro (m− β) −0.632 0.642 0.702 0.712 –
Aro (h− β) −0.652 0.633 0.604 0.612 0.592∗

Aro (β) −0.642 0.663 – – 0.572

Aro (γ) −0.512∗ 0.533 0.523 0.503 0.472∗

Aro (full) −0.653 0.574 0.602∗ 0.544 0.572∗

Fig. 2: Scatterplot of El vs. Eg for subjective arousal.
Significant differences between the low and high categories
are represented by a ‘−’ in the legends

IV. DISCUSSION

A. Neurophysiological Correlates

The results presented in Table I show that L is inversely
related to the subjective ratings, whereas Eg , El, C and S
are all positively correlated. A decrease in L and an increase
in Eg points towards an increase in sequential and parallel
global information flow, thus leading to greater integration
of information in brain connectomes [3]. On the other hand,
an increase in C and El suggests an increase in efficiency of
local information flow or segregation in brain connectomes.

In fact, salient stimuli are known to induce high arousal

TABLE II: Maximum valence and arousal classification
accuracy along with the number of top features needed to
achieve such accuracy.

Feature Subjective Maximum Number of
Set Dimension Accuracy Features

Spectral Power, Valence 52% 60
Asymmetry Arousal 54% 70

Graph Valence 63% 135
Arousal 61% 130

Spectral Power, Valence 63% 350
Asymmetry, Graph Arousal 66% 167

levels [8], thus leading to more integrated processing of in-
formation via the so-called ‘workspace neurons,’ as proposed
by the global workspace theory [2]. Also, the increase in
segregation for brain connectomes may be due to the fact
that increased salience may lead to an increase in processing
of cognitive states, such as attention, which have a top-down
effect on the sensory information processing [9]. Combined,
these two results lead to an overall increase in small-
worldness properties with increasing arousal. The subjective
arousal rating, specifically, showed stronger positive corre-
lations in higher frequency bands (e.g., f ≥ 18Hz) using
MSC, along with moderate correlations for f < 18. The
higher involvement of faster rhythms in high arousal states
have been observed in previous studies [10], [11]. On the
other hand, for the theta band, efficiency parameters derived
from inter-electrode MSC showed negative correlation with
arousal. This can be due to decrease in theta band coherence
in the right hemisphere, during affect perception [10].

Moreover, the graph metrics derived from MSCα, MSCβ

and MSCγ were shown to be significantly correlated with the
subjective valence rating. A recent study [3], has suggested
that in lower frequencies, pleasant visual stimuli require
shorter L (global properties). We have found similar results
not just for lower frequency bands, but also for higher
frequency bands. Furthermore, we also found a significant
increase in local properties of the brain networks in the mid-
beta frequency range. Various studies have shown that the
beta band (and its sub-bands) encodes affect related infor-
mation. For example, in [12] a decreased intra-hemispheric
left coherence in the low beta band with negative affect was
reported and in [13] an asymmetric activation of the beta
band while attending to affective visual stimuli was shown.
Thus, we can state that the graph features encode meaningful
affect related information as the observed correlations par-
tially concur with some of the previous studies, and can be
used as valid features for affective state recognition.

B. Affect Classification

From Figures 3 (a) and (b) it can be observed that the
accuracy curves generally stabilize around the maximum
levels, reported in Table II, after the addition of certain
number features. Thus, it can be stated that graph features
achieve better classification accuracy as compared to spectral
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Fig. 3: Classification performance versus number of top features for different feature sets for (a) valence and (b) arousal

power and asymmetry features, for both valence and arousal.
Generally, the spectral power features lack information re-
garding interactions between brain regions however, the
asymmetry features encode only inter-hemispheric interac-
tions. Graph features, on the other hand, encode information
regarding dynamics of information transfer throughout the
brain, thus outperforming the conventional features used for
affect classification. Also, fusion of graph theoretical features
with spectral power and asymmetry feature sets result in
a classification accuracy which is better (i.e., for arousal)
than or equal (i.e., for valence) to the best performance
achieved by these feature sets alone. However, to achieve
this performance the feature fusion set would require a
larger number of features, as shown in Table II. Furthermore,
amongst the top features from each feature set, most of
them belonged to beta (33%) and alpha (30%) band followed
by theta and gamma bands. This result is in corroboration
with our findings reported in Table I, where alpha and beta
bands showed the highest significant correlations with the
subjective ratings. Also, most of the top features from graph
theoretical feature set belonged to the threshold of 0.2 (35%),
which again concurs with our findings in Table I.

V. CONCLUSIONS

In this paper, we have proposed the use of graph theoreti-
cal features to characterize users’ affective states while they
experience music videos with different emotional content.
The graph features were shown to outperform conventional
features, such as spectral power and asymmetry, to solve the
affective state classification problem. Also, fusion of graph
features along with the conventional features was shown
to improve performance, thus suggesting complementarity
between the two features. These results are expected to aid in
better modelling of users’ experience perception, ultimately
resulting in better user-adaptive services.
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