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ABSTRACT
Reverberation affects perceived quality and intelligibility of speech signals, as well as the performance of
automatic speech recognition systems. Having access to room acoustics characteristics of an environment
may be used to improve speech processing systems, but such information is rarely available and in most cases
has to be estimated blindly. Techniques based on the effects of reverberation on the modulation spectrum
have been explored in the past, but they rely on its long-term average and do not use any information
related to its temporal dynamics. In this paper, we aim to extract this information from the modulation
spectrum time-series by using a deep recurrent neural network. We show the proposed model outperforms
state-of-the-art benchmark models as well as other test models using the same signal representation in the
majority of examined conditions, even when moderate amounts of noise are added to the reverberant signals.

1. INTRODUCTION
Reverberation plays an important role in the perceived

quality of a sound signal produced on an enclosed en-
vironment. Speech signal intelligibility, as well as
automatic speech recognition (ASR) performance, are
severely degraded in highly reverberant environments,
as perceptual artifacts such as coloration and echoes are
added to the direct sound signal. Reverberation is usu-
ally quantified by measures computed from the room
impulse response (RIR), such as the reverberation time
(RT), which is the time it takes for a sound to decay by
a given amount (e.g. T30 and T60 refer respectively for
decays of 30 and 60 dB) after its source has become in-
active [1]. Having access to room acoustics parameters
is useful as it gives information on what level and kinds
of distortion should be expected from a signal, and such
parameters can be used to improve ASR performance [2]
and also to adjust speech enhancement algorithms in as-
sistive listening devices and telephone/audio conferenc-
ing systems.

While there are standardized methods for measuring the
reverberation time and related features from the RIR
of a given environment, in many real-world problems

such information is not available, therefore estimating
the room acoustics characteristics directly from an ob-
served reverberant audio signal is necessary. Such meth-
ods are called blind, as they are able to estimate room
parameters related to reverberation without relying on
the RIR. Two major issues that arise with blind meth-
ods are their variability due to the speech content used to
excite the room and background noise. In [3], the authors
compare three state-of-the-art methods and show that all
methods have a significant amount of variability and a
bias on the estimation error due to low signal-to-noise
(SNR) ratios.

The modulation spectrum (MS) is an acoustic signal rep-
resentation that has been shown as useful for predicting
room acoustics characteristics from reverberant speech
signals. It is a representation of the temporal dynam-
ics of the envelopes of a subband decomposition of the
original signal [4], obtained by taking the short-time
Fourier transform of each subband envelope (and op-
tionally grouping the resulting frequency components in
an arbitrary number of bands). Based on characteristics
of clean human speech under this representation, it is
possible to detect the presence of environmental distor-
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tions such as noise and reverberation, as shown in exper-
iments with the so-called reverberation-to-speech mod-
ulation energy ratio (RSMR) [4, 5]. A limitation of the
current approaches to blind room acoustics characteris-
tics estimation using the MS is that they do not explore
its temporal dynamics information. Even though the rep-
resentation is computed in a per-frame basis, approaches
such as the ones described in [4, 6] use only the average
of all the modulation spectrum frames as the model input,
thus discarding potentially relevant information from the
time-series.

In this paper, we aim to extract this information from
the MS time-series by using a deep recurrent neural net-
work (RNN), a class of neural network that utilizes re-
cursion and internal memory to be able to create internal
states with dynamic temporal behaviour. More specifi-
cally, we use a type of RNN cells called long short-term
memory (LSTM) [7], which is able to efficiently store
information over extended time intervals and is thus bet-
ter suited for time-series analysis. We compare the pro-
posed approach to two methods that use a the per-frame
average as a "static summary" of the MS data: a poly-
nomial model based on the RSMR [4] and a feedfor-
ward neural network. In order to assess the usefulness
of modeling the temporal dynamics of this time-series,
we compare our proposed approach to a model that uses
data from all the frames without modeling intra-frame
relationships. This model is based on a per-frame Gaus-
sian mixture regression (GMR) [8] and averaging of the
per-frame predictions. Finally, we also compare these
results to the predictions of a statistical model based on
the maximum-likelihood estimation of sound decays [9].
The models are evaluated under a clean condition, where
the speech signal is only affected by reverberation, as
well in noisy conditions, where additive babble noise is
added to the reverberant signals at different SNR levels.
We show that the proposed model outperforms all of the
benchmark models in the majority of examined condi-
tions, even when moderate amounts of noise are added
to the reverberant signals.

2. MATERIALS AND METHODS

2.1. Blind room acoustics characterization us-
ing the modulation spectrum
The MS representation is a spectral analysis of tempo-

ral trajectories of spectral envelopes of a speech signal,
and has been shown to provide useful cues for several ap-

plications, such as speech recognition [10], as well as in
objective speech quality and intelligibility estimation [4].
In this work, we compute the representation based on the
perceptually-inspired setup proposed in [4]. First, the
input speech signal is decomposed in 23 acoustic chan-
nels by a gammatone filterbank with center frequencies
ranging from 125 Hz to approximately 8 kHz (for a sam-
pling frequency of 16 kHz), and with bandwidths char-
acterized by the equivalent rectangular bandwidth. Tem-
poral envelopes are then extracted via the Hilbert trans-
form and decomposed into eight overlapping modulation
bands with center frequencies logarithmically spaced be-
tween 4−128 Hz. Finally, the outputs of the modulation
filterbank are split into 256 ms frames with 32 ms overlap
and the total energy for each modulation band/acoustic
band pair is computed for each frame.

In the MS, non-reverberant clean speech signals have
most of its energy concentrated at lower modulation fre-
quency bands (approximately 2 to 20 Hz). However,
once a clean signal is affected by reverberation, the
additive effect of its reflections adds energy at higher
modulation frequencies. Such effect has been explored
both in the assessment of speech quality and intelligi-
bility in noisy and reverberant environments, as well
as in room acoustics characterization, by computation
of the reverberation-to-speech modulation energy ratio
(RSMR) [5, 4]. This metric consists in extracting the
MS of a reverberant signal and grouping it into 23 acous-
tic frequency channels (critical frequencies with equiva-
lent rectangular bandwidth) and 8 modulation frequency
channels (center frequencies going from 2− 20 Hz for
the first four channels and 20− 160 Hz for the last four
channels). The energies over all frames are averaged,
and then summed over the acoustic channel axis, result-
ing in a vector with the average energy in each modula-
tion channel. The RSMR is finally computed as the ratio
between the last four channels (corresponding to the "re-
verberation energy") to the first four channels ("speech
energy"), causing the metric to have a positive correla-
tion with reverberation time.

2.2. Recurrent neural networks and long short-
term memory
Artificial neural networks (ANNs) are a category of sta-
tistical learning models inspired by how biological neu-
ral networks operate. The main element of an ANN are
layers of neuron units, which are non-linear mappings of
a vector to another vector (not necessarily with the same
length) and can be represented by the following relation-
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ship:
h = g(Wx+b) (1)

where h is the output of the layer, g is a non-linear func-
tion such as a sigmoid, hyperbolic tangent, or rectifier
(max(·,0)), x is the input and W and b are the weight
and bias parameters of the layer, respectively, whose val-
ues are learned during training. Any layer not connected
to the input or the output is called a hidden layer. A deep
neural network (DNN) [11] is a composition of multiple
layers of neuron units, which performs sequential non-
linear projections of the input on the previous layer. The
parameters of a deep neural network are learned in a su-
pervised fashion by using an algorithm called backprop-
agation, which consists in iteratively adjusting the pa-
rameters of the network to minimize a cost function on
its input and desired output. The most commonly used
optimization procedure for training DNNs is stochastic
gradient descent (SGD) or variants of this method; it is
based on successively updating the parameters of a net-
work according to the direction pointed by the gradient
of the cost function with respect to a layer input. DNNs
have recently been employed in a broad range of tasks
achieving impressive results, setting the state-of-the-art
in tasks such as computer vision [12] and speech recog-
nition [13, 14]

A recurrent neural network (RNN) is a neural network
where, opposedly to more traditional feedforward neural
networks described previously, inputs are sequences of
vectors xt , t = 1 . . .T (where T is the number of timesteps
in the sequence) and hidden states are not only a func-
tion of the layer inputs, but also of the past hidden layer
states. This recurrent connection allows the network to
"remember" the past representation of its input and take
into account together with new inputs, which has been
shown as useful for modelling dynamics in sequential
data. RNNs have been successfully applied to sequential
data processing in many domains as, for example, acous-
tic models in ASR [14] and machine translation [15].

Given an input sequence, a recurrent neural network in its
standard formulation computes a hidden vector sequence
h and output vector sequence y by iterating over the se-
quence and computing the following [14]:

ht = H (Wxhxt +Whhht−1 +bh) (2)
yt =Whyht +by (3)

where the Wnm terms are the weight matrices of the con-
nections between n and m (where n and m correspond

either to the input x, hidden h, or output y), b are the
biases and H is the activation function used for the hid-
den layer. This formulation, however, has some issues
with training related to exploding and vanishing gradi-
ents during the training procedure [16], which causes
training to take longer or even diverge. In practice, most
current works with RNN use gated units such as the pre-
viously mentioned LSTM [7], or gated recurrent units to
deal with the vanishing gradients issue. Such units use a
gating mechanism to control the flow of information into
and out of the unit. The LSTM used in this paper is the
same used in [14], where the activation function for the
hidden layer is a composite function given by:

it = σ(Wxixt +Whiht−1 +Wcict−1 +bi) (4)
ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 +b f ) (5)
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 +bc) (6)
ot = σ(Wxoxt +Whoht−1 +Wcoct +bo) (7)
ht = ot tanh(ct) (8)

where σ is the hard sigmoid function, i, f , o, correspond
to the input, forget, and output gate respectively, and c is
the memory cell of the unit

2.3. Proposed model
In this paper, we propose a model that explores the ca-

pability of RNNs to capture temporal dependencies in
order to perform RT predictions from the MS of a re-
verberant speech signal. We expect that by using the
temporal information, the model will be less suscepti-
ble to speech content variability since it will be able
to discard or give less relevance to transient energies
in the high modulation frequencies that are caused by
specific speech segments, as opposed to those caused
by room/environmental characteristics. The model ar-
chitecture is depicted in Figure 1, where recurrent lay-
ers are represented by a self-connection. The input
is a sequence of MS frames, represented as a vector
per frame, with one coefficient per acoustic/modulation
channel pair (i.e., for 23 acoustic channels and 8 modu-
lation channels, a vector with 184 dimensions). This is
followed by two LSTM layers with 256 units each. The
number of units was decided arbitrarily based on the in-
put size and on results in preliminary experiments with
held-out data from the training set, and no hyperparame-
ter optimization was employed. The first recurrent layer
extracts a sequence of features from the MS sequence,
and outputs one vector per frame. The second LSTM
layer, on the other hand, derives a single feature vector
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(output size: 256)
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Figure 1: Diagram of the proposed model.

from the entire sequence, which accounts to its output af-
ter seeing the whole sequence. The final layer is a feed-
forward layer, which computes the target parameter from
this representation. As we are chose T30 as the target pa-
rameter in this paper, the final layer uses rectified linear
units as its activation functions to make predictions non-
negative. As usual for the fitting of regression models
of real-valued quantities, the cost function used was the
root mean-squared error (RMSE).

3. EXPERIMENTAL SETUP

3.1. Reverberant speech datasets
Our training set consists of speech data corrupted both

by synthetic reverberation and noise. As speech stim-
uli, we randomly selected 50 different sentences from
the training set of the TIMIT database [17] for each
noise/reverberation condition. We used synthetic RIRs
generated by the image source method [18], for T60
values going from 0.1 s to 1.0 s, in 0.1 s increments.
Twenty different RIRs were generated for each T60
value, with randomly selected room parameters (dimen-
sions and absorption coefficients of surfaces), resulting
in a total of 200 different reverberant conditions. The re-
verberation times estimated from the resulting synthetic
RIRs are only approximations of the arbitrary values we
passed to the RIR simulation algorithm. Therefore, we
used broadband T30 values obtained from the RIRs with
Schroeder’s method as target values [19]. Finally, two
types of synthetic noise were used in the training set:
white Gaussian noise and speech-shaped noise, at SNR
levels of 20, 15, 10, 5, 0, and -5 dB. A scenario with re-

verberation only (SNR = ∞) was also generated. Noise
was added to the reverberant speech signals and the SNR
was computed considering the reverberant signal and not
the original clean speech. A total of 129,578 sentences
were generated, from which we used 90,000 for training,
10,000 for validation, and the remaining sentences as a
development set for estimating the model performance
on simulated data.

For testing, we employed a similar process to generate
noisy and reverberant speech, but using real RIRs and
noise to corrupt the speech signals. We selected the
RIRs from the Aachen Impulse Response database [20]
for which the corresponding T30 is in the same range
as our training set. The database consists of binaural
(dual-channel) RIRs, but we considered each RIR sepa-
rately since all methods tested here are for single-channel
speech signals. We used two noise signals (recorded in a
restaurant and train station) from the DEMAND database
[21] at SNRs of 20, 10, and 0 dB (no reverberation-only
scenario). Both noise signals can be considered broadly
as babble noise, although there are some other ambient
noise elements as, for example, sounds of cutlery hitting
plates in the restaurant scenario.

3.2. Hyperparameters and training of the pro-
posed model
As described in Section 2.3, the proposed model is com-
posed of 2 LSTM layers with 256 hidden units each, fol-
lowed by one feedforward layer (256 inputs, 1 output)
with rectified linear units. Dropout [22] is applied both
to the input of the network and the output of each hid-
den layer, with a 50% chance of replacing a value by
zero. The training algorithm used to train the network
was Adam [23], with an early stopping strategy [24] to
avoid overfitting. More specifically, 10% of the training
set was kept as a validation set and training was stopped
as soon as the validation error went above its current op-
timum value for more than 5 epochs. The first 10 epochs
were not taken into account for early stopping purposes.
To allow batch training, which requires all sequences in
a batch having the same number of timesteps, sequences
were truncated to 50 frames (covering approximately 3.4
seconds of the original audio) and padded with zeros in
case they were shorter than 50 frames. Note that this is
required only to accelerate training, but does not limit the
model capability of predicting T30 for longer sequences.

3.3. Benchmarks and performance metrics
In order to evaluate the proposed method, we used a

series of benchmarks based on the MS representation, as
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well as a method based on a statistical model of sound
decay in reverberant environments that does not use any
MS processing. First, we mapped the RSMR metric to
T30 values via a second-order polynomial trained using
the same training dataset described in section 3.1. The
RSMR scores were computed based on the first 50 MS
frames instead of the whole sentence, for fair comparison
with the dataset used to train and test the other models.

Our second benchmark method is a feedforward neural
network (FNN) using the same per-frame averaging of
the MS for a given sentence. The layers have the same
dimensions as the proposed method, but are all feedfor-
ward. Training was performed using the same training
procedure and regularization methods (i.e., dropout and
early stopping) as used for training the proposed model.
While this model has higher capacity than the simple
polynomial mapping used by RSMR, it still does not ex-
plore the temporal information given by the MS repre-
sentation.

The third benchmark method is based on a Gaussian
Mixture Regression (GMR) approach [8]. A Gaussian
Mixture Model (GMM) with 8 components was first
trained using each frame from the sequences in the train-
ing dataset as input, to model the joint distribution of the
energies the modulation spectrum with T30. Then, given
an arbitrary input frame, the expected means for each
component are computed, weighted by the component
responsibility, and summed to yield a T30 estimate. For
a given sample in the test set, this procedure is repeated
for all frames and the per-frame T30 estimates are then
averaged to yield a final T30 prediction for that sample.
This model uses the information of all frames in a given
sentence without modeling any temporal dependencies.

Finally, we used the model proposed in [9], whose ap-
proach is based on a statistical model of the sound decay
of speech in a reverberant environment. First, the speech
signal is analyzed to detect possible sound decay regions.
Maximum likelihood (ML) estimates are then computed
for each sound decay region and a smoothed histogram
of these estimates is used to obtain the final RT estimate.
In this work, we adapted the implementation provided
by the authors to predict T30 instead of T60, and this
method is referred to as ML-SD (maximum likelihood
sound decay) in the following sections.

To assess the performance of each model, we computed
the RMSE and the mean absolute deviation (MAD) to
the true T30 values for each condition. These metrics

were computed on a per-sample basis instead of a per-
condition basis, in order to show variability due to speech
content. Analysis of the results is done separately for
each SNR, as in [3], to show the effect of background
noise on estimations.

4. RESULTS AND DISCUSSION
The proposed model achieved a minimum RMSE of

0.087 s in the validation set, as per the chosen early
stopping criteria, after 20 epochs. Training time for
each epoch was approximately 1,200 s using an NVIDIA
Tesla K20 GPU. Table 1 shows the RMSE and MAD re-
sults for the test set in each of the evaluated SNR condi-
tions. As can be seen, even in high SNR errors for the
test set are much higher than those found for the vali-
dation set. In part, this happened because the validation
set is not matched to the test set, as it contains speech
corrupted with synthetic noise and reverberation, while
real noise and RIRs were used for the test set. Compared
to the benchmarks, the proposed method showed lower
errors in the majority of scenarios according to both per-
formance metrics, except on the 0 dB scenario, where
RMSE was lower for the RSMR method. Under low
SNRs, part of the energy in the high modulation frequen-
cies comes from the additive noise and not from rever-
beration, so a decrease in performance is expected. The
RSMR-based method, however, shows an improvement
inversely proportional to the SNR in both performance
metrics. One hypothesis to explain this is that using the
average of all acoustic channels as opposed to using the
channels separately as features could be more robust to
additive noise. To verify whether this was the case, we
trained another LSTM-based model with an architecture
similar to the model proposed in this paper, but using the
acoustic channel averages of the modulation spectrum as
inputs (a vector with 8 features, one per modulation fil-
terbank channel). The resulting model achieved a sim-
ilar performance to the RSMR-based model for SNRs
of 20 dB and 10 dB, but slightly lower errors (RMSE
and MAD of 0.297 and 0.240, respectively) in the 0 dB
case. There are no architectural limitations in the pro-
posed model that would prevent it from learning such a
relationship between input features and data, but since
this only happens for one condition in the training set,
that could indicate that either the model has lower capac-
ity (number of parameters) than needed or the training
dataset needs to be adjusted (e.g., including more sam-
ples under low SNRs and/or samples corrupted by real
noise and RIRs).
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Figure 2: Error distributions of the predicted values for each model (10 different rooms, T30 ranging from 0.1 s to 1.0
s) under four different SNRs. Vertical bars correspond to the spread of the error values for each condition.

Table 1: T30 estimation performance for each model
(per-sample). Best results for each SNR are in bold. Er-
rors are listed in seconds.

SNR

Metric 20 dB 10 dB 0 dB

RMSE MAD RMSE MAD RMSE MAD

LSTM 0.306 0.212 0.311 0.218 0.324 0.240
GMR 0.401 0.338 0.402 0.341 0.460 0.392
FNN 0.337 0.262 0.338 0.266 0.355 0.286
RSMR 0.331 0.266 0.325 0.258 0.304 0.258
ML-SD 0.394 0.319 0.398 0.322 0.393 0.318

Figure 2 shows the error distribution for 10 differ-
ent rooms covering T30s from 0.1 to 1.0 s. under a
reverberation-only condition and SNRs of 20 dB, 10 dB,
and 0 dB, where each point shows the average predic-
tion for all different sentences in a room and vertical
error bars represent the spread of predictions. We can
notice the methods based on the average MS tend to
overestimate lower T30 values. The GMR-based method
showed a high estimation bias for 9 of the 10 rooms
and higher variability in most scenarios. The proposed
method showed lower errors for the rooms with small
(0.1 - 0.5 s) T30 than most benchmarks. All methods
underestimated T30 values higher than 0.5 s, with the
proposed method performing better for a single room in
this range (0.9 s).
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5. CONCLUSION
In this paper, we have proposed a new blind reverber-

ation time estimation model based on the temporal dy-
namics of the MS of a reverberant speech signal. Incor-
porating the temporal dynamics has pled to an improve-
ment in RMSE and MAD when compared to models that
use the MS but do not take into account such temporal
dependencies in most of the tested conditions. Our re-
sults show that the average of all acoustic channels of the
MS representation, as used in the RSMR, is more robust
to additive noise; however, such features have lower per-
formance under higher SNR conditions.

Further improvements to the model performance may be
obtained by optimizing its hyperparameters, as in this
study they were arbitrarily chosen based on the feature
dimensions, and by adding samples with real noise and
reverberation to the training set. We are also interested
in investigating whether the features learned by the pro-
posed model could be useful to predict other room acous-
tics characteristics (e.g., per-band T30 values, direct-to-
reverberant ratio), or, ultimately, as a means of providing
room acoustics information to other systems, such as for
robust speech enhancement and recognition applications.
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