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Abstract

In this thesis, we propose the use of Gaussian mixture models (GMMs) as simple, yet

effective predictors of perceived speech quality. A large pool of perceptual distortion

features is extracted from speech files. Initially, statistical data mining algorithms

are used to sift out the most relevant variables from the pool. We show that the five

most salient feature variables are sufficient to construct good GMM-based estimators

of subjective listening quality. It is shown, however, that the features selected by the

data mining schemes limit the performance of the proposed voice quality predictor. To

this end, a novel feature selection algorithm that directly optimizes GMM prediction

performance is also proposed. The algorithm performs N -survivor search, trading

complexity and accuracy via the parameter N . Comparisons with PESQ, the current

“state-of-art” speech quality estimation algorithm, show that the proposed algorithm

incurs, on average, 26.12% higher correlation and 18.04% lower root-mean-squared

error. Tested on unseen data the proposed algorithm is capable of reducing RMSE

by an average 41% relative to PESQ.
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Chapter 1

Introduction

This thesis proposes a novel predictor of perceived speech quality. More specifically,

Gaussian mixture densities are employed to map perceptual features extracted from

speech signals to a quality rating. In this chapter, the motivations for this work

are described in Section 1.1. Section 1.2 summarizes the major contributions of this

thesis. Lastly, Section 1.3 outlines how this thesis is organized.

1.1 Motivations

The telecommunications industry is going through a phase of rapid development.

According to Infonetics Research,1 in 2004 cable voice-over-internet use rose an as-

tounding 900% when compared to 2003. Wireless telephony use rises about an aver-

age 14.5% a year. New technologies are emerging continuously; voice-over-internet, or

VoIP, is the fastest growing telephony service today, bringing in revenues in the order

of several billions of dollars a year. This technological boom has left networks that

1Infonetics Research is an international market research firm covering the data networking and
telecommunications industries. More information can be found at www.infonetics.com
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CHAPTER 1. INTRODUCTION 2

are heterogeneous and complex, making it extremely difficult for telephone service

providers to identify the root cause of voice quality problems. Since speech quality is

a major contributor to customer satisfaction, measurement of quality has become crit-

ically important for the service provider. In fact, for wireless carriers, infrastructure

and maintenance costs are also directly related to customer satisfaction [1]. Today,

the demand for newer and more efficient methods of measuring the quality of voice

signals is on the rise, motivating the research described in this thesis.

Traditionally, the most reliable way to measure the quality of a speech signal was

through the use of subjective speech quality assessment tests. In such tests, human

listeners are asked to rate the quality of the speech signal they just heard according to

a five-point scale. The average of the listeners scores is the subjective mean opinion

score (MOS) [2, 3]. Subjective tests are highly unsuitable for online quality measure-

ment and are also very expensive and time consuming. The research described in

this thesis is motivated by the fact that objective methods have replaced subjective

testing, allowing computer programs to automate speech quality measurement in real

time, making them suitable for field applications.

In a nutshell, objective speech quality assessment consists of extracting perceptual

features that carry information regarding the quality of a speech signal. Feature ex-

traction, combined with a mapping from these features to a quality rating emulates

the “cognitive” behavior of a human’s perception of speech quality. The Interna-

tional Telecommunications Union ITU-T P.862 standard, also known as Perceptual

Evaluation of Speech Quality (PESQ) [4] is the latest objective quality measurement

standard algorithm. Nevertheless, the algorithm still falls short of the accuracy that

can be obtained from subjective listening tests with sizable listener panels.
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Recently, data mining techniques have been proposed to improve the accuracy

of auditory-model based quality measurement [5]. A large number of perceptual

features are extracted to create a rich pool of candidate features. Feature selection

algorithms are used to discard noisy or redundant features. The selected features are

then mapped to an objective MOS. Objective methods aim to deliver MOSs that are

highly correlated with the MOSs obtained from subjective listening experiments. To

this end, new mappings are sought that maximize quality prediction accuracy. Newer

and more efficient algorithms that can iteratively perform feature selection, whilst

updating the mapping functions, could open doors to newer generations of speech

quality predictors.

1.2 Thesis Contributions

This thesis contributes to the field of objective speech quality assessment in at least

two instances:

1. Gaussian mixture models (GMMs) are proposed as possible mapping functions

between perceptual features and perceived voice quality. A total of 209 percep-

tual features are extracted from a speech signal and, initially, common feature

selection algorithms, such as classification and regression trees (CART) and

multivariate adaptive regression splines (MARS) are used to select the most

salient features. Simulation shows that GMM-based speech quality predictors

outperform PESQ, the current “state-of-art” voice quality predictor algorithm.

By using CART and MARS for feature selection, the first steps towards an ef-

ficient algorithm are taken. Careful analysis of the proposed GMM estimators,
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however, show that the proposed algorithm has certain limitations, e.g., diag-

onal covariance GMMs only provide modest improvement over PESQ. These

limitations occur, mainly, due to characteristics present in the features selected

by CART or MARS. The motive is simple, CART/MARS selects features that

are optimal for CART or MARS mapping and not for GMM mapping. Nev-

ertheless, full covariance GMMs are shown to overcome these shortcomings.

Publications that arise from this contribution are [6–8].

2. A feature selection algorithm, that directly optimizes GMM estimation per-

formance, is proposed and demonstrates that there exists a considerable gap

in performance relative to GMM estimators trained on CART/MARS selected

features. The algorithm performs N -survivor search allowing the compromise

between complexity and performance to be adjusted via the parameter N . If

D features are desired, the algorithm iterates D times. With single survivor

search, the single feature that is chosen per iteration is the one that minimizes

squared GMM regression error. It is shown that, at the cost of higher compu-

tational complexity, performance improvement can be obtained with the use of

N -survivor search, N > 1. Considerable improvement over PESQ is reported.

Publications relating to this contribution are [9, 10].

1.3 Outline of Thesis

Chapter 2 introduces “state-of-art” speech quality measurement methods, including

subjective and objective methods. Section 2.2 introduces three types of subjective

tests, as prescribed in ITU-T Recommendation P.800/P.830; Section 2.3 presents
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objective methods. Methods that fall in the class of intrusive measurement are de-

scribed in Section 2.3.1, together with the description of PESQ and SDMQA. Section

2.3.2 covers non-intrusive measurement methods and briefly presents examples of

parameter-based models and signal-based algorithms.

Chapter 3 introduces the techniques of Gaussian mixture models. GMM properties

and definitions are given in Section 3.2. GMM parameter estimation is the focus

of Section 3.3 where the expectation-maximization (EM) algorithm is introduced.

GMM-based estimators, the heart of this thesis, are presented in Section 3.4.

In Chapter 4, the first steps towards a novel GMM-based speech quality predictor

are given. A large pool of 209 feature variables are extracted from speech signals and

CART or MARS are used to select the top ranked features to be mapped by a GMM

estimator. A detailed description of the proposed algorithm is given in Section 4.2.

Advantages and disadvantages of the proposed algorithm are discussed in Section 4.3.

Chapter 5 describes an improved GMM-based voice quality measurement algo-

rithm. The features selected by CART or MARS are shown to limit the performance

of the proposed estimator and a new feature selection algorithm that directly op-

timizes GMM estimation is proposed. Section 5.2 describes the proposed feature

selection algorithm. Section 5.3 evaluates the proposed algorithms by comparing

with GMM estimators trained on features selected by CART or MARS. Comparisons

to PESQ are also carried out in this section.

Lastly, Chapter 6 provides the conclusions of this thesis and suggests possible

future research directions.



Chapter 2

Speech Quality Assessment

2.1 Introduction

Speech quality is a major contributor to the end user’s perception of quality of ser-

vice. As networks become more heterogeneous and complex, and new technologies

interoperate with legacy equipment, identifying the root cause of voice quality prob-

lems can be a challenging task. The evaluation and assurance of speech quality has,

consequently, become critically important for telephone service providers, especially

for wireless carriers whose infrastructure and maintenance costs are directly related

to customer satisfaction [1].

Voice quality is a subjective opinion, based on the user’s reaction to the speech

signal they actually heard. Subjective methods make use of a listener panel to mea-

sure speech quality on to a scale from 1 to 5, with 1 corresponding to unsatisfactory

speech quality and 5 corresponding to excellent speech quality. The average of the

listener scores is the subjective Mean Opinion Score, MOS [2, 3]. This has been the

most reliable method of speech quality assessment but it is very expensive and time

6



CHAPTER 2. SPEECH QUALITY ASSESSMENT 7

consuming, making it unsuitable for frequent or rapid applications. These shortcom-

ings can be overcome by using objective measurement methods, which replace the

listener panel with a computational algorithm. Objective methods aim to deliver

MOSs that are highly correlated with the MOSs obtained from subjective listening

experiments.

Objective quality assessment tests can be classified as intrusive or non-intrusive

as shown in Figure 2.1. Intrusive measurement depends on some form of comparison

between the reference and degraded speech signals to predict the subjective MOS.

The International Telecommunications Union ITU-T P.862 standard, also known as

Perceptual Evaluation of Speech Quality (PESQ) [4] is the latest intrusive objective

quality measurement standard algorithm.

In some situations an intrusive approach may not be applicable because the input

speech signal may be unavailable. Non-intrusive measurement depends only on the

degraded speech signal and can be further classified as signal-based or parameter-

based. Signal-based approaches predict voice quality by directly analyzing the de-

graded speech signal. Models have been proposed in [11–13], and only recently has

ITU-T released P.563 as its non-intrusive objective quality measurement standard al-

gorithm [14]. Parameter-based methods can predict communication quality directly

from network and/or terminal parameters; such models include the ITU-T E-model

[15]. Moreover, a recently proposed method by Sun [16] estimates listening quality

via parameter-based methods.

In this chapter, subjective quality measurement methods are described in Section

2.2. Objective methods will be presented in further detail in Section 2.3, including

intrusive (Section 2.3.1) and non-intrusive methods (Section 2.3.2). This thesis will



CHAPTER 2. SPEECH QUALITY ASSESSMENT 8

Figure 2.1: Classification of speech quality assessment methods

focus on a novel intrusive method for speech quality prediction.

2.2 Subjective Speech Quality Assessment

Traditionally, the most reliable way to measure the quality of a speech signal was

through the use of subjective speech quality assessment tests. A speech file is played to

a group of listeners, who are asked to rate the quality of this speech signal. Subjective

tests are very reliable, given that a large listening panel is used. In [17], factors, such

as listener variability, are shown to affect the reliability of subjective tests. Larger

listener panels are shown to improve accuracy and repeatability of subjective voice

quality assessment. In most tests, the number of listeners ranges from 16 to 64
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listeners (half male, half female), where the maximum limit is established by cost and

time limitations [18]. Today, as computational algorithms quickly replace listener

panels, subjective tests are still performed serving as benchmarks for newly proposed

objective methods.

Clearly, subjective methods are important in the task of speech quality estimation.

ITU-T Recommendations P.800 [3] and P.830 [2] contain methods and guidelines for

conducting subjective evaluations of transmission quality in order to obtain reliable

and reproducible test results. P.800 describes three methods of listening-opinion

subjective tests: absolute category rating (ACR), degradation category rating (DCR)

and comparison category rating (CCR). Both P.800 and P.830 describe the necessary

controlled laboratory conditions in which tests are to be carried out.

2.2.1 Absolute category rating (ACR) test

ACR testing is the most commonly used subjective method and listeners are in-

structed to rate the processed speech material presented to them according to a

5-point listening quality scale as shown in Table 2.1. Listeners are not given refer-

ence speech files for comparisons and are asked to rate the “absolute” quality of the

speech samples. The average of the listener scores is the subjective mean opinion

score, MOS.

2.2.2 Degradation category rating (DCR) test

In DCR testing, listeners are presented with a clean reference speech signal before

they are presented with the processed signal. The listeners are then instructed to

rate the perceived degradation of the processed speech material when compared to



CHAPTER 2. SPEECH QUALITY ASSESSMENT 10

Table 2.1: Subjective opinion scale for ACR testing

Category Speech Quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

Table 2.2: Subjective opinion scale for DCR testing

Category Level of Degradation

5 Imperceptible

4 Just perceptible but not annoying

3 Perceptible and slightly annoying

2 Annoying but not objectionable

1 Very annoying and objectionable

the unprocessed material. Ratings are also based on a 5-point listening quality scale

as shown in Table 2.2. This type of test is more sensitive to degradations introduced

by the system being tested [18] and are suitable for evaluating good speech quality

[3]. The average of the listener scores composes the degradation MOS, also known as

DMOS. As opposed to MOS, different experiments using DMOS ratings can only be

compared if they share the same reference signals, or different reference signals but

of the same quality [19].

2.2.3 Comparison category rating (CCR) test

The CCR test, a refinement of the DCR test, asks listeners to identify the quality of

the processed speech sample relative to its unprocessed counterpart using a two-sided
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Table 2.3: Subjective opinion scale for CCR testing

Category Quality of Second Sample Compared to Quality of First Sample

3 Much better

2 Better

1 Slightly better

0 About the same

-1 Slightly worse

-2 Worse

-3 Much worse

rating scale, as given by Table 2.3. For CCR testing, in half of the trials, the unpro-

cessed sample is followed by the processed sample. On the remaining trials, the order

is reversed. In effect, two judgements are provided with one response: “which sample

has better quality?” and “how much better is it?” The CCR testing improves on DCR

as it provides the possibility to assess speech processing that can either degrade (e.g.,

speech compression algorithms) or improve (e.g., speech enhancement algorithms) the

quality of speech. Most importantly, though, CCR testing is used to minimize biases

that occur due to the order in which the speech materials are presented in the DCR

test. The average of the listener scores is the comparison MOS or CMOS.

All MOS tests have to be carried out in restricted laboratories, following strict

norms. These requirements are necessary in order to obtain accurate and repeatable

results. Unfortunately, these requirements make subjective tests very expensive and

time consuming, i.e., unsuitable for frequent or rapid applications. Today, most of the

research in speech quality measurement, in one way or another, tries to identify and

model audible distortions through an objective process based on human perception.

Objective methods can be implemented by computer programs and can be used in
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real time measurement of speech quality. Objective speech quality assessment is the

topic of the next section.

2.3 Objective Speech Quality Estimation

Objective speech quality assessment has replaced expensive and time consuming sub-

jective methods, allowing computer programs to automate speech quality measure-

ment in real time, making them suitable for field applications. In fact, objective

measurement is the only viable means of measuring voice quality, for the purpose of

real-time call monitoring, on a network-wide scale.

Objective algorithms can be classified as intrusive or non-intrusive as shown in

Figure 2.2. Intrusive measurement systems depend on some form of distance metric

between two input signals – a reference (clean) and a degraded speech signal at the

output of the system under test – to predict the subjective MOS, namely, ˆMOS.

These systems are referred to as intrusive due to the injection of a voice signal known

to the algorithm into the transmit end. Non-intrusive measurement, on the other

hand, depends only on the degraded speech signal to find ˆMOS. Non-intrusive meth-

ods are often referred to as “passive” in the sense that a test signal is not required.

2.3.1 Intrusive Speech Quality Estimation

Over the years, many different speech parameters have been used to measure voice

quality [20]. Classical waveform speech coding algorithms used signal-to-noise ratio

(SNR) and the segmental SNR [21] to estimate the quality of speech in waveform-

preserving systems. Newer generation speech coders do not preserve the waveform so



CHAPTER 2. SPEECH QUALITY ASSESSMENT 13

Figure 2.2: Objective quality measurement: intrusive (solid + dashed lines) and
non-intrusive (solid line only)

these measures are of little relevance. In [17], measures of distortions in the short-

time spectral envelopes of speech are introduced such that matching waveforms are

not needed in order to produce zero distortion.

Measurement algorithms that exploit human auditory perception rather than just

the acoustic features of speech provide more accurate prediction of subjective quality.

This has been the focus of current objective quality assessment research. It is known

that the peripheral auditory system of human preprocesses information and “com-

pact” feature extraction is done in higher-level brain functions. The human decision

is based on this compacted data. An adequate model should emulate this biological

preprocessing and higher-level functions, and deliver ratings that have high correla-

tions with the subjective results. The preprocessing part is relatively well understood

but the higher-level brain functions are difficult to model.

Various algorithms and schemes have attempted to model the higher-level brain
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functions, including BSD (Bark spectral distortion) [22], MNB (measuring normaliz-

ing block) [23, 24], PSQM (perceptual speech quality measure) [25], and the current

“state-of-art” PESQ (perceptual evaluation of speech quality) [4]. Recently, in [5], an

approach is introduced that uses statistical data mining techniques to improve the

accuracy of auditory-model based quality measurement; performance improvement

over PESQ was reported.

The major difference among the aforementioned algorithms is in the post-processing

of the auditory error surface. MNB uses a hierarchical structure of integration over

a range of time and frequency intervals. PESQ performs integration in three steps,

first over frequency, then over short-time utterance intervals and finally over the whole

speech signal. Different p values are used in the Lp norm integrations of the three

steps. The different methods of integration, though they may not resemble cognitive

processes, achieve their respective degrees of effectiveness through using subjectively

scored speech data to calibrate the mapping from the integrated measure to the esti-

mated subjective MOS.

The method proposed in [5] (henceforth denoted SDMQA – statistical data mining

quality assessment) differs from the above algorithms in the sense that it classifies

perceptual distortions under a variety of contexts. Distortions with the same context

are integrated to a value which the authors call a “feature”. A large pool of context-

dependent feature measurements is created and statistical data mining tools are used

to find salient features in the pool. Features are selected to produce the best estimator

of the subjective MOS value.

In the sequel, PESQ and SDMQA are described in more detail. The objective of

this thesis is to propose a novel intrusive speech quality measurement algorithm using
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Figure 2.3: PESQ algorithm architecture

SDMQA for feature extraction. For this reason a more in-depth description of the

SDMQA algorithm is given. PESQ is used for benchmarking the proposed algorithm

performance so a more concise description of the algorithm is given.

2.3.1.1 Perceptual Evaluation of Speech Quality (PESQ)

The International Telecommunications Union ITU-T P.862 standard, also known as

Perceptual Evaluation of Speech Quality (henceforth PESQ) [4] is the latest objective

quality measurement standard algorithm. PESQ replaced its predecessor, PSQM, in

2001 as it was capable of identifying time delay, allowing alignment between the

original and degraded speech signals. Delay compensation is essential for quality

measurement of voice packets that are subject to delay variation in the network.

Furthermore, PESQ, unlike PSQM, directly calculates the objective MOS score on a

5-point scale. An overview of the PESQ algorithm architecture is depicted in Figure

2.3.
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The first step of PESQ is to compute a series of delays between the original input

and the degraded output. Based on these delays, PESQ compares the original signal

with the aligned degraded output using a perceptual model. The signals are trans-

formed to a representation that is analogous to the psychophysical representation of

audio signals in the human auditory system by means of perceptual frequencies and

compressive loudness scaling. A more in-depth description of the psychophysical (in-

ternal) representation of audio signals is given in Section 2.3.1.2. The difference in

internal representations of the degraded and reference speech signals is then calcu-

lated, representing the audible difference between the two signals. A positive differ-

ence indicates components such as noise are present; a negative difference indicates

components have been omitted.

Lastly, the cognitive model evaluates audible errors by computing noise distur-

bances for the individual time-frequency bins. Two types of disturbances are calcu-

lated: asymmetrical and symmetrical. Asymmetry processing uses a scaling factor to

apply different weights to positive and negative disturbances. The asymmetrical dis-

turbance is such that only bins with positive disturbances remain. The symmetrical

disturbances are calculated by averaging, over frequency bands, a measure of absolute

audible errors and asymmetrical disturbances, and a measure of audible errors that

are significantly louder than a reference threshold.

The predicted MOS is calculated as a linear combination of the average distur-

bance value and the average asymmetrical frame disturbance value. The final PESQ

score falls in the range of -0.5 and 4.5. It is stated in [26] that in most cases the

output range will be a MOS-like score between 1 and 4.5. Nonetheless, a mapping

from the PESQ raw score to the ACR listening quality scale is proposed in [27]. The
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Figure 2.4: Mapping from PESQ raw score to ACR listening quality scale

mapping is given by the following equation:

ˆMOS = 0.999 +
4

1 + exp(−1.4945 ∗ PESQraw + 4.6607)
(2.1)

and is depicted in Figure 2.4.

2.3.1.2 Statistical Data Mining Quality Assessment (SDMQA)

The architecture of the SDMQA scheme is depicted in Figure 2.5. Similar to PESQ,

the auditory processing modules decompose the input speech signals into power dis-

tributions over time-frequency and then convert them to auditory excitations on a

loudness scale. The cognitive mapping module interprets the differences (distortions)

between the auditory excitations of the clean and the degraded speech signals. In

effect, the cognitive module “integrates” the distortions over time and frequency to

arrive at a predicted quality score.
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In SDMQA, a plethora of contexts under which distortion events occur is created.

Distortions with the same context are integrated to a value which the authors call

a feature. Straightforward L2-norm integration (i.e., root-mean-squared) is used to

compute the feature value. From the pool of candidate features, data mining tech-

niques are used to find a small subset of features and the best way to combine them

to estimate the speech quality.

The auditory processing block found in Figure 2.5 can be further decomposed as

depicted in Figure 2.6. Human auditory processing of acoustic signals is commonly

modelled by signal decomposition through a bank of filters whose bandwidths increase

with filter center frequency according to the bark scale [28]. Seven bands, each with

bandwidth of about 2.4 bark are used and a 128-point FFT is used to produce a

7-point power spectrum every 10 ms. The spectral power coefficients are grouped

into 7 bands and the coefficients in each band are summed to produce a total of 7

subband power samples. The samples are then converted to the subjective loudness

density using Zwicker’s power law [28]:

L(f) = L0

(

ETQ(f)

s(f)E0

)k
[

(

1− s(f) +
s(f)E(f)

ETQ(f)

)k

− 1

]

(2.2)

where the exponent k = 0.23, L0 = 0.068, E0 is the reference excitation level, ETQ(f)
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is the excitation threshold at frequency f , E(f) is the input excitation at frequency

f , and s(f) is the threshold ratio.

The “cognitive mapping” block can be decomposed as illustrated in Figure 2.7.

The decomposed clean and degraded speech signals from the auditory processing

modules are first subtracted to obtain their absolute difference, which is called the

“distortion.” The distortion over the whole speech signal can be organized into a two-

dimensional array, representing a distortion surface over time-frequency. The goal of

the cognitive mapping is to aggregate cognitively similar distortion events through

time segmentation and distortion severity classification.

Time segmentation labels the speech frames as “active” or “inactive.” Active

frames are further classified into voiced or unvoiced. Segmentation separates the dif-

ferent types of speech frames so that they can exert separate influence on the speech

quality estimate. The total distortion of each frame is given severity classifications of

“low”, “medium”, or “high” by simple thresholding. The aim is to sift out the signif-

icant distortion events. Distortion samples in time-frequency bins are thus labelled

according to their frequency band, time-segmentation type, and severity level. The

distortion samples with the same composite-label value belong to the same context.

For instance, the above seven subbands, three time segmentation labels and three

distortion classification labels are combined to create 7× 3× 3 = 63 contexts. Each

context contributes a feature to the candidate pool for mining.
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Additional contexts are defined in order to create a “rich” pool of candidate fea-

tures for mining. Besides labelling each frequency subband with its natural subband

index, each subband is also labelled with the rank order obtained by ranking the seven

distortions in a frame in order of decreasing magnitude. Rank ordering the subband

distortions, as well as classifying frame-level distortions based on severity, create con-

texts that capture distortions independent of specific time-frequency locations, but

dependent on the absolute or relative level of distortion severity.

Additional contexts are also created by omitting some labels such as the severity

level. These contexts are the seven subbands, in natural or ordered index, for each

of the three time-segmented frame classes, without severity classification; altogether

there are 7 x 3 = 21 such contexts. Weighted mean and root-mean distortions,

probability of each frame type, and the lowest-frequency-band and highest-frequency-

band energy of the clean speech frames are also created to produce a pool of 209

candidate features. The 209 feature variables are listed in Appendix A.

SDMQA resorts to data mining techniques to sift a smaller subset of features
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(� 209) that are sufficient for the speech quality task at hand. Note that the sta-

tistical data mining block in Figure 2.7 is for the design phase only. Once feature

mining is performed, the block is replaced by a simple mapping block in the testing

phase. SDMQA utilizes classification and regression trees (CART) [29] and multi-

variate adaptive regression splines (MARS) [30] to map selected features to a MOS

score.

2.3.2 Non-Intrusive Speech Quality Estimation

Unlike intrusive methods described in Section 2.3.1, non-intrusive methods do not

require the injection of a reference signal and are appropriate for monitoring live

traffic. Non-intrusive quality measurement deviates from the scope of this thesis and

is briefly introduced here for the sake of completeness. The references given here

should supply the reader with sufficient guidance to material pertinent to the topic.

As shown in Figure 2.1, non-intrusive methods fall into two categories: signal-

based or parameter-based quality assessment. Signal-based approaches predict voice

quality by directly analyzing the degraded speech signal. Parameter-based methods

predict subjective MOS directly from IP network impairment parameters (e.g., packet

loss, jitter) and non-IP network parameters (e.g, codec, echo). The purpose is to

establish a relation between perceived voice quality and network related “distortions.”

Signal-based models have been proposed in [11–13], and only recently has ITU-T

released P.563 as its non-intrusive objective quality measurement standard algorithm

[14]. P.563 resulted from a collaboration of Psytechnics’ NiQA algorithm [31], Swis-

sQual’s NiNA [32], and Opticom’s P3SQM.

The signal parameterization in P.563 is divided in three independent functional
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blocks, as shown in Figure 2.8, corresponding to the main classes of distortion. These

blocks are: vocal tract analysis, high additional noise, and speech interruptions, mut-

ing and time clippings. A total of 51 characteristic signal parameters are calculated.

Based on a restricted set of 8 key parameters, a dominant distortion class is se-

lected. The key parameters and the selected distortion class are used for adjusting

the speech quality model. Furthermore, for each distortion class, a linear combination

of parameters is used to generate an intermediate quality rating that, together with

other additional signal features are combined to calculate the (raw) objective quality

score. Unlike PESQ, the mapping from P.563’s raw score to the 5-point ACR scale

is achieved by means of a 3rd order monotonic mapping function with coefficients

optimized on a per-study basis.

Parameter-based models include the ITU-T E-model [15] and the recently pro-

posed method by Sun [16]. The E-model combines the effect of various transmission

parameters into a rating factor, which lies between 0 and 100. This rating factor
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is later mapped to a MOS score. The E-model has a number of limitations and is

applicable to only a restricted number of codecs and network conditions. In [16], a

novel non-intrusive algorithm is proposed based on a combination of PESQ and the

E-model. The method is reported to be generic and applicable to a number of mul-

timedia applications. The reader is referred to [16] for a more thorough explanation

of the system proposed by Sun.

2.4 Summary

This chapter has presented two methods of speech quality assessment: subjective and

objective. Subjective speech quality assessment has been described and its importance

has been highlighted. Due to the scope of this thesis, we focus mainly on objective

speech quality measurement. State-of-art intrusive algorithms have been introduced

and the scheme used to develop the work presented in this thesis (SDMQA) has been

described in-depth. Non-intrusive methods are also concisely described.



Chapter 3

Gaussian Mixture Models

3.1 Introduction

Finite Mixture Distributions have been used as models throughout the history of

statistics and estimation theory [33]. It has been over 100 years since Newcomb’s

application of Gaussian Mixture Models (henceforth GMMs) for outliers [34] and

Pearson’s classic paper on the decomposition of GMMs by the method of moments

[35]. The ensuing century has revealed a multitude of fields in which GMMs are

applied. Some applications include image compression [36]; speaker identification

and pattern recognition [36–41]. GMMs have also been used as classifiers of features

based on wavelet transforms for machine monitoring [42] and have found their way into

supervised and unsupervised training and in the design of vector quantization [43–48].

Amazingly enough, GMMs have also found their way into finance and economics in

the prediction of stocks and exchange rates [49]. This thesis proposes a novel use for

GMMs: speech quality measurement [6–10].

In Section 3.2, GMM definition and properties are presented. Section 3.3 focuses

24
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on GMM parameter estimation and the expectation-maximization algorithm is pre-

sented. Lastly, Section 3.4 describes GMM-based estimators. GMM-based estimators

play an important role in the quality predictor algorithm proposed in this thesis.

3.2 Definition and Properties of GMMs

3.2.1 Definition

As stated previously, finite mixture models have served as important models through-

out the history of statistics. The most important class of finite mixture models are

the Gaussian mixtures, also known as Normal mixtures. The reasons behind this

widespread use are not coincidental: (1) univariate Gaussian densities have a sim-

ple and concise representation, depending uniquely on two parameters, mean and

variance, and (2) the Gaussian mixture distribution is universally studied and its

behaviors are widely-known [41]. At a cost of extra parameters, GMMs improve on

Gaussians by allowing asymmetry and multimodality.

Let u be an K-dimensional vector, a Gaussian mixture density is a weighted sum

of M component densities

p(u|λ) =
M

∑

i=1

αi.bi(u) (3.1)

where αi ≥ 0, i = 1, ...,M are the mixture weights, with
∑M

i=1 αi = 1, and bi(u),

i = 1, ...,M are the K-variate Gaussian densities with mean vector µi and covariance

matrix Σi given by

bi(u) =
1

(2π)K/2|Σi|1/2
exp

(

−
1

2
(u− µi)

TΣ−1
i (u− µi)

)

(3.2)
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where the superscript [·]T indicates the transpose of a matrix or vector. The pa-

rameter list, λ={λ1, . . . , λM}, defines a particular Gaussian mixture density; each

λi = {µi, Σi, αi} represents the three elements: mean vectors, covariance matrices

and mixture weights of each Gaussian component. Figure 3.1 depicts a Gaussian

mixture, consisting of three single Gaussians. Figure 3.1 (a) illustrates the three indi-

vidual Gaussian distributions with their respective mixture weights. When combined

as a GMM, the result is depicted in Figure 3.1 (b).

3.2.2 Properties

An important property of GMMs is that, by varying M and λ, one can approximate

any complex probability density function, to an arbitrary accuracy, given that the

model uses a sufficiently large M and that the parameters are chosen wisely. In

Figure 3.2 a 16-component GMM is used to fit a “spiral” distribution. Figures 3.2 (a)

and (b) illustrate a “birds-eye-view” and a normal view of the spiral distribution and

the fitted GMM contours, respectively. As more components are used, more accurate

is the fit.

Furthermore, GMMs have the ability of forming smooth approximations of arbi-

trary densities. In [37], comparisons are performed between the classical unimodal

Gaussian model, the Gaussian mixture model and the VQ (vector quantizer) model.

The classical unimodal Gaussian model represents the feature distribution by a po-

sition (mean vector) and a spread (covariance matrix). The VQ model represents

the feature vector by a discrete set of characteristic templates. The GMM, by using

discrete sets of Gaussian functions, each with their own mean and variance, acts as

a hybrid between these two models. An experiment consisting of modelling a single
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Figure 3.1: (a) three single Gaussians with their respective mixture weights, and (b)
three single Gaussians combined as a GMM [50]
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(a)

(b)

Figure 3.2: (a) birds-eye-view and (b) normal illustration of a spiral distribution and
the fitted 16-component GMM contours
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Figure 3.3: Comparison of distribution modelling: (a) histogram of a single cepstral
coefficient from a 25 second utterance by a male speaker; (b) unimodal Gaussian
model; (c) 10-component GMM; (d) histogram of the data assigned to the VQ centroid
locations of a the 10-element codebook [37]

cepstral coefficient from a 25 second utterance by a male speaker is carried out in

[37]. Figure 3.3, taken from [37], clearly illustrates the aforementioned fact that the

GMM provides a more smooth overall distribution fit and its components detail the

multimodal nature of the density.

Due to the fact that GMMs use a discrete set of Gaussian functions, each with their

own mean and variance, it is expected that the GMM have several different “shapes”,

depending on the form of their covariance matrices. The two most widely used forms
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are full and diagonal covariance matrices. The full covariance matrix models the

data as an ellipsoid-shaped cloud, at an angle, to allow correlation between feature

components. This type is the most powerful Gaussian model, as it fits the data

best. The drawback is the fact that it needs lots of data to properly estimate the

parameters and often depends on regularization schemes to yield accurate estimates.

For full covariance GMMs, the number of parameters that have to be estimated during

training is given by M
2

(K2 +3K +2). Note that the optimal value for M is not known

a priori. As will be later discussed in Chapter 4, the approach used in this thesis is

to vary M over a range of values. The value that results in best performance on the

validation data set, whilst maintaining a satisfactory training ratio, is chosen. 1

On the other hand, diagonal covariance matrices are a good compromise between

quality and model size. They model the data as ellipsoid-shaped clouds, aligned

with the axes because correlations between feature components are ignored. This

type is widely used in practice and mainly due to the fact that, since the Gaussian

components are acting together to model the overall probability density function,

a linear combination of diagonal covariance Gaussians is capable of modelling the

correlations between the feature vector components. In summary, the effect of using

M full covariance matrices can be equally obtained by using a larger set of diagonal

covariance Gaussians [37]. For diagonal GMMs, M(2K + 1) parameters need to be

estimated during training. Figure 3.4 illustrates the “clouds” that model the data.

Note the clouds at an angle in (a) and the clouds aligned with the axes in (b).

When using GMMs to model data, estimates of λ have to be calculated efficiently

in order to attain an accurate model. For full covariance GMMs, the number of

parameters that need to be estimated scales quadratically with the feature space

1The reader is referred to Section 4.2 for a definition of training ratio
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(a) (b)

Figure 3.4: Different forms of GMMs (a) full and (b) diagonal covariance matrices

dimension and due to the curse of dimensionality [51], these estimates may quickly

become erroneous. The next section focuses on GMM parameter estimation based on

the well-known expectation-maximization algorithm [52].

3.3 GMM Parameter Estimation

In statistics, a distinction is made between parametric estimators (those that make

strong assumptions about the distribution of the sampled data) and non-parametric

estimators (those that make weak distributional assumptions). The parametric ap-

proach assumes that the unknown pdf (f(x)) belongs to a family of parametric den-

sities (f(x|θ)). Once the specific functional form is chosen the problem reduces to

finding the value of θ that best models the data. This technique falls in the field

of maximum likelihood (ML) parameter estimation. The disadvantage is that an a

priori structure of the distribution is enforced on the observed data and in most cases

this structure is unknown.
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The nonparametric approach is data-driven, i.e., it doesn’t make any assumptions

on the form of the unknown pdf. The advantage of this technique is that is gives

consistent estimates irrespective of the original form of the unknown pdf [53]. These

techniques, however, require substantially large numbers of observations to make their

estimates and they do not allow easy learning. Some examples of nonparametric

methods are the K-nearest-neighbor approach, the method of histograms and the

kernel estimator, among others.

Both aforementioned approaches have their own merits and limitations. If a spe-

cific form is chosen for the density function, it may differ drastically from the true

density and poor estimates are given. Using the nonparametric approach one can

approximate any density function but the number of variables in the model grows di-

rectly with the number of data points [39]. Clearly an intermediate or semi-parametric

approach would offer a more practical solution. Density estimation using mixture

models falls into the class of semi-parametric estimation techniques, combining much

of the flexibility and consistent estimates of nonparametric methods with certain ana-

lytic advantages of parametric methods [45]. Like a parametric model it has structure

and parameters that control the behavior of the density in known ways, but without

constraints that the data must be of a specific distribution type. Like a nonparametric

model, the GMM has many degrees of freedom to allow arbitrary density modelling,

without undue computation and storage demands [54].

When using GMMs, the goal in training is to estimate the parameters λ for a given

training data set. There are several techniques available for estimating the parameters

of a GMM but by far the most used and well-established method is the maximum

likelihood estimation. The aim in ML estimation is to find the model parameters
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that maximize the likelihood (or log likelihood) of the GMM, given the training data.

Unfortunately, the expression for the GMM likelihood is a nonlinear function of the

parameters, as will be shown in the sequel, and direct maximization is not possible.

The use of the expectation-maximization (EM) algorithm [52] is required in order to

obtain, iteratively, the ML parameter estimates. The EM algorithm is discussed next.

3.3.1 The Expectation-Maximization (EM) Algorithm

As was stated before, the aim in ML estimation is to find the model parameters that

maximize the likelihood of the GMM, given the training data. Assuming indepen-

dence between the T training vectors, U = {u1, . . . ,uT}, the GMM likelihood can be

written as

p(U|λ) =
T

∏

i=1

p(ui|λ) (3.3)

where p(ui|λ) is given by Equation 3.1.

Clearly this expression is a nonlinear function of the parameters λ and a direct

maximization cannot be found. The log likelihood of the parameters, given the data

set becomes

l(λ|U) =
T

∑

i=1

log p(ui|λ) =
T

∑

i=1

log
M

∑

j=1

αjbj(ui). (3.4)

This function is not easily maximized because it involves the log of a sum.

Intuitively, there is a “credit-assignment” [45] problem: which component of the

mixture generated a given data point and thus which parameters to adjust to fit

the data point? The EM algorithm for GMMs is an iterative method that tries to

solve this “credit-assignment” problem [52]. A mathematical trick is often used and

consists of assuming a “hidden” binary indicator variable Z = {z1, . . . , zT}, such that
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zi = (zi1, . . . , ziM ) and zij = 1 if and only if data point ui was generated by Gaussian

component j. With this, the maximization problem decouples into a set of simple

maximizations, and the log likelihood function becomes [45]

lc(λ|U,Z) =
T

∑

i=1

M
∑

j=1

zij log[p(ui|zi; λ)p(zi; λ)]. (3.5)

Since zi is unknown lc cannot be utilized directly; the expectation of lc, here

denoted as Q(λ|λ(k)), is used instead. Q(·) is the so called Q function [52] and λ(k)

are the estimated parameter values after k iterations. The EM algorithm maximizes

the likelihood function by iterating the following two steps, the E-step and the M-step.

1. E Step: Q(λ|λ(k)) = EZ [lc(λ|U,Z)|U,λ(k)]

2. M-Step: λ(k+1) = arg max
λ

Q(λ|λ(k))

The E-Step computes the expected data log likelihood and the M-Step finds the

parameters that maximizes this likelihood. These two steps form the basis of the

EM algorithm for mixture modelling. Each EM iteration guarantees a monotonic

increase in the model’s likelihood (log likelihood) value. Furthermore, in [52, 55] the

EM algorithm is shown to always converge, given that measures are taken to avert

ill-conditioning.

3.3.2 EM algorithm for GMMs

For GMMs, the E-Step simplifies to computing hij ≡ E[zij|ui,λ
(k)], i.e., the proba-

bility that Gaussian component j with parameters defined by iteration k generated

the data point ui, given by
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hij =

|Σ̂
(k)

j |
−1/2 exp

(

−
1

2
(ui − µ̂

(k)
j )T ˆ

Σ
(k)
j

−1

(ui − µ̂
(k)
j )

)

M
∑

l=1

|Σ̂
(k)

l |
−1/2 exp

(

−
1

2
(ui − µ̂

(k)
l )T ˆ

Σ
(k)
l

−1

(ui − µ̂
(k)
l )

)

. (3.6)

The M-Step re-estimates the mixing proportions, means and covariances of the Gaus-

sians using the data weighted by hij. The new estimates (at iteration k + 1) become

α̂
(k+1)
j =

1

T

T
∑

i=1

hij, (3.7)

µ̂
(k+1)
j =

T
∑

i=1

hijui

T
∑

i=1

hij

, (3.8)

Σ̂
(k+1)

j =

T
∑

i=1

hij(ui − µ̂
(k+1)
j )(ui − µ̂

(k+1)
j )T

T
∑

i=1

hij

. (3.9)

Note that the training of a GMM requires the selection of two initial and critical

factors: the order M of the mixture model and the initial parameters of the algorithm.

A few strategies have been taken into consideration to alleviate the dependence on

initialization, e.g., multiple random starts and choosing the one leading to the highest

likelihood, and modified EM algorithms using split and merge operations to escape

from local maxima [44]. The most common approach, however, is to use the k-

means algorithm [56]. The algorithm partitions the data into M subsets, each subset

populating a region in the feature space. The empirical probability of each subset

becomes the initial mixture weights. The mean of the data in each subset becomes
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Figure 3.5: Histogram of pairs of the first two formant frequencies for vowels /a/ and
/o/

the initial mean of the corresponding mixture component and the covariance of the

data of each subset determines the initial covariance of the respective component.

The following experiment illustrates the effectiveness of the EM algorithm on

finding the parameters of a GMM. Figure 3.5 depicts a 2-D histogram corresponding

to simulated artificial pairs of the first two formant frequencies for the vowels /a/

and /o/. Figures 3.6–3.8 illustrate three GM models (with M = 3) estimated at

three different EM iterations. Figure 3.6 depicts a GMM with initial parameters

estimated via the k-means algorithm. Figures 3.7 and 3.8 exhibit the GM model with

parameters estimated at iteration 1 and 18, respectively. Convergence is shown to

have been achieved by the 18th iteration, as shown in Figure 3.9. Visual comparisons

between Figures 3.5 and 3.8 display the accuracy of the GM model, fitted to the data

by means of the EM algorithm.
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Figure 3.6: GM model with initial parameters found by k-means algorithm

Figure 3.7: GM model after one EM iteration
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Figure 3.8: GM model after 18 EM iterations

0 2 4 6 8 10 12 14 16 18

−2.72

−2.71

−2.7

−2.69

−2.68

−2.67

x 104

Iteration number

Lo
g−

lik
el

ih
oo

d

Figure 3.9: Log-likelihood versus iteration number; convergence is achieved by the
18th iteration
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It is also important to note that with full covariance matrices the number of

parameters that need to be estimated scales quadratically with the feature space

dimension. When dealing with limited data, severe problems may arise due to sin-

gularities. Many regularization schemes have been proposed to avert ill-conditioning.

The modified EM algorithm with Tikhonov regularization, proposed by Koshizen et

al, is an example [57]. Ormoneit and Trest propose in [48] two regularization methods:

the first uses a Bayesian prior on the parameter space, the second applies ensemble

averaging to density estimation. In [47], a method of pruning the eigen-directions

of each covariance matrix is proposed. In [58, 59] constraints are introduced in the

covariance matrices enabling stable EM algorithms and deterministic annealing.

Another simple, yet effective approach to avert ill-conditioning is to add a small

diagonal matrix, namely εIn×n, to each covariance matrix in each M-step iteration

of the EM algorithm. Typically, the optimal value for ε is not known a priori. It is

common to vary ε over a range of values and choose the value that leads to the best

performance on the validation data set. This last approach is the one used throughout

the schemes proposed in this thesis.

In [45], an extension to the EM algorithm is given and allows for the incorporation

of missing values in the learning phase. [47] builds on the idea and devises estimators

based on GMMs. In [40], GMM estimators are used to adjust the magnitude spectrum

of a speech signal when the fundamental frequency of the signal is altered. In [60],

GMMs are used to estimate missing line spectral frequencies. GMM-based estimators

are the heart of this thesis and are presented next.
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3.4 GMM-Based Estimators

The goal in GMM-based minimum mean squared error (MMSE) estimation is to find

a mapping or regression function, f̂(x), that minimizes the mean squared error, εMSE,

between predictor variables (x) and the target variable (y), where

εMSE = E[(y − f̂(x))2]. (3.10)

It is known that the mean squared error (3.10) is minimized when f̂(x) = E[y|x], the

conditional expectation of the target variable, given the predictor vector.

GMM-based estimators rely on modelling the joint density of the K-dimensional

predictor variables with the target variable using (3.1) with u = [y,x]T . The mean

vector and the covariance matrix of the ith GMM component become, respectively

µi = (µy
i µx

i ),

Σi =







Σyy
i Σyx

i

Σxy
i Σxx

i






.

Given the GMM parameters, the MMSE regression function is given by [47]

f̂(x) = E[y|x] =
M

∑

i=1

hi(x)[µy
i + Σyx

i (Σxx
i )−1(x− µx

j )]. (3.11)

The above GMM estimator or GMM regressor function is a weighted sum of linear

models, where the weight hi(x) is the probability that the ith Gaussian component

generated the vector x and given by

hi(x) =

αi

|Σxx
i |

1/2
exp

(

−
1

2
(x− µx

i )
T (Σxx

i )−1(x− µx
i )

)

M
∑

k=1

αk

|Σxx
k |

1/2
exp

(

−
1

2
(x− µx

k)
T (Σxx

k )−1(x− µx
k)

)

. (3.12)
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Note the similarities of (3.12) with (3.6). Moreover, if the covariance matrices are

restricted to be diagonal, (3.11) simplifies to

f̂(x) =
M

∑

i=1

hi(x)µy
i . (3.13)

This restriction has to be used with care, as it can result in large estimation errors

when there exists a significant amount of correlation between the predictor and the

response variables, i.e., Σyx
i are far from zero.

3.5 Summary

This chapter has presented Gaussian mixture models, their properties and applica-

tions. The two most widely used forms of GM models have been addressed: diagonal

and full covariance matrix GMMs. The expectation-maximization (EM) algorithm, a

stable algorithm for estimating GMM parameters has also been introduced. The ef-

fectiveness of the EM algorithm is illustrated by means of an example where simulated

speech formant pairs are accurately modelled by a 3-component GMM in less than

twenty iterations of the EM algorithm. Lastly, the concept of GMM-based estima-

tors are described. GMM-based estimators are the foundation of the speech quality

estimation algorithm proposed in this thesis. The proposed algorithm is presented in

the next chapter.



Chapter 4

Towards a Novel Speech Quality

Estimator

4.1 Introduction

In this chapter the use of GMM estimators to predict the quality of a speech signal

is proposed. First, SDMQA is used to generate a large pool of feature measurements

from the distortion surface between the original speech signal and the degraded speech

signal. Four statistical data mining methods, multivariate adaptive regression splines

(MARS) [30], classification and regression trees (CART) [29], a hybrid CART-MARS

technique, and the sequential forward selection (SFS) algorithm [61] are used to sift

out salient features. Gaussian mixture densities are used to model the joint distri-

bution of these features (x) with the subjective MOS (y). The MMSE estimate,

E[y|x], of the subjective MOS value is derived by means of (3.11). We use PESQ to

benchmark the proposed algorithm.

The remainder of this chapter is organized as follows. Section 4.2 will describe the

42
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architecture of the proposed algorithm. A speech quality estimation task is carried

out and performance results for the proposed algorithm are provided in Section 4.3.

4.2 Algorithm Description

The proposed intrusive measurement algorithm is designed based on the architecture

depicted in Figure 4.1. The algorithm is built on perceptual feature variables, ob-

tained from mining a large pool of candidate feature variables extracted from the

SDMQA algorithm. 90% of the available data is used for training of the GMMs,

whilst 10% is kept for testing.

A brief review of the feature extraction block (SDMQA) in Figure 4.1 is as follows.

First, the clean and degraded signals are split into 7 frequency bands. The spectral

power distortion between the clean and degraded speech signals is then found. Time

segmentation labels the speech frames as “active” or “inactive”. Active frames are

further classified into voiced or unvoiced. The total distortion of each frame is given

severity classifications of “low”, “medium”, or “high” by simple thresholding. Dis-

tortion samples in time-frequency bins are thus labelled according to its frequency

band, time-segmentation type, and severity level. Additional contexts are created to

form a pool of 209 candidate features.

A pool of 209 candidate features is redundant for the quality estimation task at

hand. A brute force approach to finding the best subset of features to use would

entail examining 2209− 1 possible subsets, a clearly impossible task. Nonetheless, the

initial steps towards proposing a novel speech quality assessment algorithm requires

a smaller subset of features that combined have the power of effectively predicting a

speech signal’s quality. Data mining techniques are used to sift out the most relevant
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Figure 4.1: Architecture of proposed algorithm
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variables from the pool of variables. A brief description of two common data mining

tools – CART and MARS – is given in the sequel.

CART

CART (classification and regression trees) is a binary recursive partitioning algorithm.

The process is binary because parent nodes are always split into two child nodes by

answering a simple “yes” or “no” question on a predictor variable. It is recursive in

the sense that the process can be repeated by treating each child node as a parent

node. A notion of variable importance is introduced in CART by means of a purity

function. A split is selected such that the data in the child node is “purer” than the

data in the parent node. A node is recursively split until a decrease in the impurity

function reaches a certain threshold.

CART trees are designed in a two-stage process. First, an over-size tree is grown.

The tree is then pruned based on performance validation, until the best-size tree is

found. At this point, feature importance rankings are determined by summing the

decrease in impurity produced in the remaining nodes if the split were attained at

that specific feature. Scores reflect the contribution each predictor variable has on

estimating the target variable. The feature used to split the root node receives 100

% importance, while features that receive 0% importance play no role in estimation

and are discarded.

MARS

Multivariate adaptive regression splines (MARS) are constructed as a sum of basis

functions, or more specifically, truncated spline functions. Like CART, the MARS
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Table 4.1: Training ratio as a function of M

M Diagonal Full

2 68 31

3 45 21

4 34 16

5 27 13

regression model is also built in two stages. First, an over-size model is built by

progressively adding more basis functions. In the second stage, basis functions that

contribute the least to modelling accuracy are progressively pruned. With MARS,

variable importance scores are found by investigating the effects the variable has in

fitting the data by dropping it from the model. The most important variable is the

one that, when omitted, degrades the model fit the most. As CART, feature variables

receive an importance score ranging from 0% to 100%. Features that receive a 0%

importance rating are discarded.

It is noted that both CART and MARS assign an importance rating greater than

0% to 20 features (reader is referred to [5] for a description of the 20 features).

Training a GMM on 20 features is costly, especially if full covariance matrices are

used. Experiments show that by choosing the top-5 most important feature variables,

a good compromise between accuracy and complexity is achieved. Table 4.1 shows

the training ratio (ratio between the number of parameters that have to be estimated

during the training phase and the total number of files in the training set) as a

function of M . Results are presented for both diagonal and full covariance GMMs.

Note that the training ratio for full covariance GMMs achieves low levels for M > 3.

Same is true for diagonal GMMs when M > 5.
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Initially, the top-5 features as ranked by MARS, CART or a CART-MARS hybrid

configuration are tested in the design of the proposed GMM-based speech quality

estimator. During the training phase, the joint density of the top-5 most important

feature variables (x) with the subjective MOS (y) is modelled as a GMM, as in (3.1)

with u = [y,x]T . The GMM parameters λ found in training are used in the testing

phase to predict the value of the subjective MOS, y, given the observed values of the

5 -dimensional feature vector, x. The MMSE estimate of y given x, namely E[y|x], is

given by (3.11). In the next section, the proposed algorithm is tested and compared

to PESQ.

4.3 Speech Quality Prediction Test

The proposed algorithm is compared to PESQ using MOS labelled speech databases.

The performance of the algorithms is assessed using the correlation (R) and root-

mean-square error (RMSE) between subjective MOS wi and objective MOS yi. Cor-

relation coefficients are calculated using Pearson’s formula

R =

∑N
i=1(wi − w̄)(yi − ȳ)

√

∑N
i=1(wi − w̄)2

∑N
i=1(yi − ȳ)2

(4.1)

where w̄ is the average of wi, and ȳ is the average of yi. RMSE is calculated using

RMSE =

√

∑N
i=1(wi − yi)2

N
. (4.2)

Note that in [62] RMSE is shown to be the sum of unexplained variance in the

regression model, MOS estimation error due to limited number of listeners (affecting

all algorithms equally), and bias error between subjective MOS and objective MOS.

The calculation of R does not take into consideration this bias error; therefore, unless
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Table 4.2: Description of speech databases used in this thesis

# Database Language no. of files

1 ITU-T Supp23 Exp1A French 176

2 ITU-T Supp23 Exp1D Japanese 176

3 ITU-T Supp23 Exp1O English 176

4 ITU-T Supp23 Exp3A French 200

5 ITU-T Supp23 Exp3C Italian 200

6 ITU-T Supp23 Exp3D Japanese 200

7 ITU-T Supp23 Exp3O English 200

8 Wireless IS-127 EVRC English 96

9 Wireless IS-96A English 96

10 Mixed English 240

11 G.728 Japanese 1068

12 G.728 English 1068

13 G.728 Italian 1068

the estimates are unbiased or all suffer from the same bias, RMSE can be viewed as

a more realistic measure of estimator performance.

The speech databases used in this thesis are listed in Table 4.2. They include the 7

multilingual databases in ITU-T P-series Supplement 23 [63], two wireless databases

(IS-96A and IS-127 EVRC), a mixed wireline-wireless database, and three multilin-

gual databases comprised of speech coded using the ITU-T G.728 speech coder.

The three Exp1x databases in ITU-T Supp23 contain speech coded using the

G.729 codec, singly or in tandem with one or two other wireline or wireless standard

codecs, under clean channel condition. The four Exp3x databases contain single- and

multiple-encoded G.729 speech under various channel error conditions and input noise

conditions. The wireless IS-96A and IS-127 EVRC (Enhanced Variable Rate Codec)

databases contain speech coded using the IS-96A and IS-127 codec, respectively, under

various clean and degraded channel conditions.
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The mixed database contains speech coded with a variety of wireline and wireless

codecs, under a wide range of degradation conditions: tandeming, channel errors, and

clipping. The three G.728 databases contain speech coded using the G.728 (16kbps)

speech coder subjected to various channel errors, tandeming, and acoustic noise. All

databases include reference conditions such as speech degraded by various levels of

MNRU (modulated noise reference unit).

The speech databases used in this experiment are databases numbered 1-10. These

ten databases are combined into a global database with a total of 1760 speech file pairs

and 10-fold cross validation is used to measure performance. The global database is

randomly divided into 10 data sets of almost equal size. Training and testing is

performed in 10 trials, where, in each trial, one of the data sets serves as a test set

and the remaining 9 are combined to serve as a training set. Each data set serves as

a test set only once. The ten resulting R’s and RMSE’s are averaged to obtain the

cross-validation R and RMSE.

The performance results for the feature variables selected by MARS and CART

are shown in Tables 4.3 and 4.4, respectively. GMM-i stands for a Gaussian mixture

model with i components. The column “%↑” indicates percentage improvement in R

found by using the proposed method. The percentage improvement is given by

% ↑ R =
RGMM −RPESQ

1−RPESQ

× 100%. (4.3)

The improvement indicates percentage reduction of the gap to perfect correlation. In

turn, column “%↓” indicates percentage reduction in RMSE relative to PESQ.

As can be seen, when using 5-component diagonal GMMs, a 13.67% decrease in

RMSE can be achieved for MARS selected features. For CART selected features
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Table 4.3: Performance for MARS selected variables - diagonal covariance matrices

R %↑ RMSE %↓

PESQ 0.8185 N/A 0.460 N/A

GMM-3 0.8086 - 5.45 0.4094 11.01

GMM-4 0.8232 2.58 0.4008 12.86

GMM-5 0.8377 10.58 0.3971 13.67

Table 4.4: Performance for CART selected variables - diagonal covariance matrices

R %↑ RMSE %↓

PESQ 0.8185 N/A 0.460 N/A

GMM-3 0.8315 7.16 0.4035 12.27

GMM-4 0.8395 11.57 0.3957 13.97

GMM-5 0.8531 19.06 0.3938 14.38

a 14.38% decrease can be attained. The penalty of using diagonal matrices can be

illustrated with the graph of the subjective MOS versus objective MOS for one of

the cross-validation trials (vide Figure 4.2). The prominent vertical alignment of

points suggests poor prediction performance. The alignment disappears and better

prediction performance is obtained when full covariance matrices are used, as will be

shown in the sequel.

With full covariance matrices the number of parameters that need to be estimated

scales quadratically with the feature space dimension. To avert ill-conditioning a small

diagonal matrix, namely εIn×n, is added to each covariance matrix in each M-step

iteration of the EM algorithm. In this experiment, the ε that led to best performance

was ε = 0.001.

The performance results for full covariance GMMs are shown in Tables 4.5 and 4.6,

for feature variables selected by CART and MARS, respectively. With the correla-

tion between features properly modelled, an improvement of 23.47% and 16.09% in R
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Figure 4.2: Subjective MOS versus objective MOS for CART selected features using
five diagonal Gaussian components.

Table 4.5: Performance for CART selected variables - full covariance matrices

R %↑ RMSE %↓

PESQ 0.8185 N/A 0.460 N/A

GMM-2 0.8569 21.15 0.3892 15.39

GMM-3 0.8611 23.47 0.3860 16.09

and RMSE, respectively, is achieved for CART selected features and a 3-component

GMM. Further improvement can be seen for MARS selected features where an im-

provement of 32.78% and 17.98% in R and RMSE is achieved.

It is conjectured that for diagonal covariance GMMs, the improvement in R is more

modest because some of the features selected by MARS and CART have significant

correlation amongst them. This is illustrated with the use of the correlation color map

in Figures 4.3 and 4.4. Figure 4.3 represents the correlation between the predictor
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Table 4.6: Performance for MARS selected variables - full covariance matrices

R %↑ RMSE %↓

PESQ 0.8185 N/A 0.460 N/A

GMM-2 0.8683 27.43 0.3773 17.52

GMM-3 0.8780 32.78 0.3783 17.98
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Figure 4.3: Correlation map for MARS selected features.

(y) and the features (x1 to x5) selected by MARS. For CART, the color map is shown

in Figure 4.4. The use of a small number of diagonal Gaussian components does not

compensate for this correlation and full covariance matrices are thus needed in order

to predict the residual variation in subjective MOS.

The 5 most salient feature variables are listed in Table 4.7 for all data mining

techniques. As can be seen, only voiced frames are captured by the features selected

using CART. In whispered speech, all normally voiced phonemes are not vocalized, i.e.
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Figure 4.4: Correlation map for CART selected features.

they become unvoiced. Such situation, though rare, would cause problems for these

features. It can be inferred that the estimator is not sensitive to degradation in the

unvoiced regions and the non-speech regions. The CART-MARS hybrid scheme uses

CART to pre-screen features from the feature candidate pool. The features selected

by CART are then used as a smaller feature candidate pool for MARS to sort through.

By doing this, features can be drawn from voiced and unvoiced frames. An improve-

ment of 30.24% and 19.04% in R and RMSE is achieved with a 3-component GMM.

The performance results for the feature variables selected by this hybrid scheme are

shown in Table 4.8.

Careful analysis of the features selected by the three aforementioned data mining

schemes showed a certain trend within the feature variables as shown in Table 4.9.

The table is composed of the subjective MOS, five MARS-selected features (x1 to
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Table 4.7: Features selected for various data mining algorithms

Rank MARS CART CART-MARS SFS

1 I P VUV V WM I P VUV V O 1

2 V B 5 V O 2 REF 1 I P VUV

3 V B 2 V O 1 V WM 2 REF 1

4 V B 2 2 V RM V B 5 V B 2

5 U P VUV V O 0 U P V O 5

Table 4.8: Performance for CART-MARS selected variables - full covariance matrices

R %↑ RMSE %↓

PESQ 0.8185 N/A 0.460 N/A

GMM-2 0.8662 26.28 0.3766 18.13

GMM-3 0.8734 30.24 0.3724 19.04

x5), and the objective MOS ( ˆMOS) estimated using a 3-component full GMM, for

six distinct test speech signals. Note that all six test signals have the same subjective

MOS, i.e., they have been rated as having, on average, the same objectionable level

of distortion. It can be inferred that these six speech signals belong to the same

“distortion class” and their feature values should not vary considerably.

Table 4.9 shows that the features selected by MARS, on the contrary, vary consid-

erably and this variation is reflected on the estimates. For test vector 2 an estimate

of 3.598 is obtained, i.e., an error of 2.8%, but for test vector 6 the estimate MOS is

2.308, an error of 34%. It is conjectured that in order to obtain further improvement

better features would have to be used, preferably features that do not vary consider-

ably within the same distortion class. To this end, the SFS algorithm is used. The

algorithm starts with the variable that is most correlated with the target variable,

and at each step adds a new variable that, together with the previous ones, most
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Table 4.9: Trends in MARS selected features

File # MOS ˆMOS x1 x2 x3 x4 x5

1 3.5 3.843 0.312 0.421 0.662 0.517 1.072

2 3.5 3.598 0.328 0.471 0.703 0.521 1.011

3 3.5 3.037 0.666 0.885 1.194 0.918 1.680

4 3.5 2.309 0.766 1.091 1.538 1.169 2.226

5 3.5 3.038 0.334 0.504 0.895 0.753 1.691

6 3.5 2.308 0.902 1.101 1.448 1.222 2.402

accurately predicts the target. A linear regression mapping is used by the SFS algo-

rithm. Furthermore, a partial F-test is incorporated in the algorithm such that the

variables chosen have small variances within each distortion class.

An improvement of 36.08% and 21.7% in R and RMSE is provided by the SFS

algorithm. The performance results of this scheme are shown in Table 4.10. Looking

back at Table 4.7, it can be seen that the features selected by the SFS algorithm are

gleaned from the top three features selected by MARS, CART, and the CART-MARS

hybrid scheme.

Figure 4.5 depicts a scatter plot of the subjective MOS versus objective MOS for

CART-MARS selected features, using a GMM with three Gaussian components and

full covariance matrices. The data shown are for one of the cross-validation trials.

Note that the points are no longer aligned with the vertical axis as in the case of

diagonal covariance matrices. A further method for measuring model performance is

to plot the distribution of absolute residual errors between objective and subjective

MOS [26]. Figure 4.6 plots the distribution of errors for SFS selected features for one

of the trials. As can be seen, almost 78% of the GMM estimates are within 0.50 unit

of the subjective MOS.

A last experiment compares GMM estimators to multiple linear regressors. GMMs
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Table 4.10: Performance for SFS selected variables - full covariance matrices

R %↑ RMSE %↓

PESQ 0.8185 N/A 0.460 N/A

GMM-2 0.8834 35.75 0.3649 20.67

GMM-3 0.8840 36.08 0.3602 21.70
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Figure 4.5: Subjective MOS versus objective MOS for CART-MARS selected features
using three full Gaussian components.
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Figure 4.6: Residual error distribution for SFS selected features

are often regarded as being computationally intense; here we show that using such

models is indeed worth the cost. We compare GM models with multiple linear regres-

sion models, y = Xb, with coefficients b estimated using least squares. Note that

the first column of the matrix X is a column vector of all ones. This allows for an

intercept term, namely b0 to be estimated. Various experiments are tested. First we

test linear regression models trained on the top-5 features selected by the four data

mining algorithms. We also test with linear models trained on the top-20 features

selected by CART and MARS. Lastly, we compare with a linear regressor trained

on all 209 features. This last model achieves a training ratio of approximately 6, a

value three times smaller than when using a 3-component, full covariance GMM. As

can be seen in Table 4.11, all models described above result in considerably poorer

estimation performance when compared to GMM estimators (vide Tables 4.3 - 4.10).
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Table 4.11: Performance of multiple linear regression models

Features R RMSE

MARS (top-5) 0.7677 0.5126

CART (top-5) 0.7490 0.5299

CART-MARS (top-5) 0.7573 0.5217

SFS (top-5) 0.7972 0.4830

MARS (top-20) 0.8137 0.4659

CART (top-20) 0.7985 0.4824

All 209 0.8220 0.4579

This indicates that GMMs, despite their computational cost, can be used as accurate

estimators of speech quality.

4.4 Summary

This chapter has presented the framework behind a novel objective speech quality

estimation algorithm based on Gaussian mixture modelling. The usefulness of features

selected by CART, MARS, a CART-MARS hybrid scheme, and the SFS algorithm

are tested and the SFS algorithm has shown to provide the best performance. The

CART-MARS hybrid scheme improved on CART by including features from unvoiced

frames.

Diagonal Gaussian components have shown to provide only modest improvement

over PESQ and this is attributed to the fact that the five most salient feature vari-

ables selected by the data mining techniques were correlated and the use of only

five diagonal components was not sufficient to compensate for this. With full Gaus-

sian components the correlation between features is properly modelled and significant

improvement over PESQ is reported.
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This experiment has shed light on the power of perceptual features for speech qual-

ity prediction. It has also highlighted the strengths and weaknesses of a GMM-based

quality predictor algorithm. Results show that feature mining in conjunction with

GMM modelling can produce simple estimators that outperform PESQ. Currently,

CART/MARS selected features are suboptimal for GMM estimation and feature se-

lection that directly optimizes GMM estimation performance would demonstrate if

there is a gap relative to best possible performance. The next chapter focuses on

a novel feature selection algorithm that directly optimizes GMM prediction perfor-

mance.



Chapter 5

GMM-Based Feature Selection

5.1 Introduction

In Chapter 4, the first step towards an efficient GMM-based speech quality predictor

is given. The choice of feature variables, however, is crucial in the speech quality

estimation task, as redundant or noisy features degrade estimation performance. The

problem at hand is to pick m feature variables out of n > m variables for the GMM

estimator. The best m is often not known a priori, and an exhaustive search for an

optimal feature subset entails examining 2n− 1 possible subsets, a clearly impossible

task for large n.

The approach used so far has been to use common feature selection algorithms such

as CART [29] and MARS [30]. When designing GMM-based estimators, the features

selected by the aforementioned algorithms may not lead to high estimation accuracy,

especially when diagonal GMM estimators are used. Consequently, a feature selection

algorithm that directly optimizes GMM prediction performance is highly sought.

In [64], the concept of feature saliencies in the context of GMMs is proposed.

60
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By adopting a penalty criterion, saliencies of irrelevant features go to zero, thus

performing feature selection. This feature selection procedure, however, does not

take the GMM estimator into consideration and may still lead to features that are

inefficient for the estimation task at hand.

In this chapter a feature mining algorithm targeted to estimation tasks that make

use of GMM estimators is proposed. The algorithm is described in Section 5.2.

A description of the algorithm’s capabilities to perform N -survivor search is also

presented in this section. Section 5.3 describes a speech quality prediction experiment

where comparisons are carried out between GMM estimators trained on features

selected by the proposed algorithm and GMM estimators trained on features selected

by CART or MARS. Comparisons with PESQ and a test on unseen data are also

shown in this section.

5.2 Algorithm Description

5.2.1 Feature Selection

It is argued in [45] that the GMM estimators have interesting relations to models

such as CART and MARS in the sense that the mixture of Gaussians competitively

partitions the feature space and learns a linear regression surface on each partition.

Thus, it seems evident that one should use the GMM estimator to sift out the most

relevant variables. The proposed sequential feature selection algorithm progressively

constructs f̂ using (3.11) or (3.13) as features are being selected.

The proposed algorithm starts with an empty feature set and features from a

candidate feature set are added to the set progressively. To determine which candidate
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feature to add, the algorithm tentatively adds to the current feature set one feature

that is not already selected to form an augmented feature set. The joint density of

the target variable and the augmented feature set is modelled with a GMM, with

model parameters λ estimated using the EM algorithm. The accuracy of the GMM

estimator using λ is then calculated. The above is repeated for every candidate feature

and corresponding GMM. The candidate feature that produces the least regression

error is admitted into the current feature set to form an updated feature set. The

algorithm stops when the desired number of features has been selected.

It is worth mentioning that for each candidate feature the best number of Gaus-

sian components in (3.1) can be determined by checking different values of M . Using

the notation “EM” to stand for GMM parameter estimation via the EM algorithm, f̂k

for the mapping function with k variables, and D for the desired number of features,

the algorithm can be summarized as follows:

Initialization: Let I = {1, . . . , n}, S = ∅, k = 1;

Step 1: λi ← EM(y, S ∪ {xi}), ∀i ∈ I;

Step 2: ik = arg min
i∈I

∑

j(yj − f̂k(S ∪ {xi}|λi))
2;

Step 3: I ← I − {ik}, S ← S ∪ {xik}, k ← k + 1;

Step 4: Go to step 1, stop if k > D.

Care has to be taken to avert ill-conditioning of full covariance GMMs. As in

Chapter 4, a small diagonal matrix, εIn×n, is added to each covariance matrix in each

M-step iteration of the EM algorithm. By varying ε from 10−2 to 10−10, tests show

that the value that leads to best performance is ε = 10−9.
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5.2.2 N-Survivor Search

With a corresponding increase in computational complexity, the algorithm can per-

form sequential multiple-survivor search. So far, the algorithm description has focused

on one survivor, i.e., the one feature variable that minimizes estimation error. In N -

survivor search, at each iteration, the N features that assume the top-N ranks in

minimizing the estimation error are kept as “survivors”. A tradeoff between com-

plexity and performance can be adjusted by tuning the parameter N .

If the ultimate goal is to find D features out of n candidate features, then N

survivors are kept in iterations i = 1, 2, . . . , D − 1. At iteration i = 1, the algorithm

selects the N best features out of the n available candidates. At iterations 1 < i < D

the N best ranked features, out of the N(n− i+1) possible feature combinations, are

kept. Lastly, at iteration i = D, the single best feature is kept. The last best feature

and its ancestor features constitute the set of features selected by the search process.

The next section is dedicated to testing the accuracy of the proposed algorithm.

Tests are performed with the proposed 1- and N -survivor search algorithm. Com-

parisons with GMM estimators trained on features selected by CART or MARS are

carried out in the first experiment. Comparisons with PESQ are shown in the second,

and an estimation test with unseen data is described in the third experiment. Results

are presented for both diagonal and full covariance GMMs.

5.3 An Improved Speech Quality Predictor

In the following experiments, databases numbered 1-13 (refer to Table 4.2) are uti-

lized. The combined thirteen databases contain 5864 speech file pairs. 10-fold cross
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validation is used to provide some robustness in the performance evaluation. As

before, estimation performance is assessed by R, as in (4.1) and by RMSE, as in

(4.2).

It is worth mentioning that the feature pool used here is slightly different than the

one used in Chapter 4. It was noted that the data mining algorithms often selected

features that amount to probabilities of certain types of speech frames, e.g., V P. In

theory, these features carry no relevant speech quality information, and serve only

as weights for the data mining models. It is also noted that features such as V WM

(weighted mean distortion of voiced frames) and V RM (root-mean distortion) carry

important speech quality information and were seldom chosen to be in the top-5

ranking. It is decided to combine [?] WM and [?] RM, where [?] can be either V,

U, or I, with their respective frame probabilities, e.g., V RM × V P, and use these

new features to replace the frame probability features. A total of 212 (209 − 3 + 6)

features are thus used in the following experiments.

5.3.1 Experiment I

The first experiment compares GMM estimators trained on features selected by the

proposed feature selection algorithm to estimators trained on features selected by

CART or MARS. For this experiment all permissible values of M are checked at

each iteration. This is done to obtain a feeling of how the GMM behaves as the

algorithm progresses. To allow comparisons with Chapter 4 the top-5 features are

chosen, and the number of Gaussian components is restricted to M ≤ 5. With M = 5,

an adequate training ratio (ratio between the number of parameters that have to be

estimated during the training phase and the total number of files in the training set)
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of 37 for full covariance matrices and 81 for diagonal matrices is maintained.

Let Mi be the number of Gaussian components chosen in iteration i of the proposed

algorithm, the following combinations were often selected throughout the ten cross

validation trials:

• Diagonal: M1 = 4, M2 = M3 = M4 = M5 = 5;

• Full: M1 = 2, M2 = 3, M3 = M4 = 4, M5 = 5.

Note that over the five algorithm iterations (D=5) used in this experiment the number

of Gaussian components either increases or stays the same as the algorithm progresses.

As expected, full covariance GMMs use fewer Gaussian components at the beginning,

and the number of components increases with the number of features. Figures 5.1 (a)

and (b) show the effects the number of features has on R and RMSE, when using

Gaussian components with diagonal and full covariance matrices, respectively. Also

note that the above values of Mi will be used when N -survivor search is performed.

Tables 5.1 and 5.2 show the features selected using the proposed algorithm for

diagonal and full covariance matrices, respectively. Features are presented for each

of the ten cross validation trials. Table 5.3 lists the features selected using MARS.

CART selected features V O 1, V O 2, V O 3, V O 4, and V WM 2 for all trials but

the fourth, where V WM 2 was replaced by V O 2 2.

Tables 5.4 and 5.5 compare performance figures for a five-component GMM esti-

mator designed using the proposed algorithm to that of an estimator designed using

CART or MARS, for diagonal and full covariance matrices, respectively. The column

“%↑” indicates percentage improvement in R, as given by (4.3) but with RPESQ re-

placed by RCART or RMARS. As can be seen, the proposed algorithm outperforms

both benchmark algorithms. For diagonal GMM estimators an average improvement
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Figure 5.1: R and RMSE (dashed lines) as a function of the number of features for
(a) diagonal and (b) full GMM estimators
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Table 5.1: Feature variables selected by proposed algorithm (diagonal)

Cross Validation Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Trial 1 V O 0 V B 1 2 I P 2 U P 0 V B 3

Trial 2 V O 0 V B 3 V P 0 V P 1 U P 2

Trial 3 V P 2 V B 1 2 V RM×V P U P 1 I P 2

Trial 4 V O 0 I O 0 1 U B 4 1 REF 1 V B 1 1

Trial 5 V O 0 V B 1 I P 2 V P 1 I B 6

Trial 6 V O 0 I O 0 1 U B 4 1 REF 0 V B 2 2

Trial 7 V RM×V P I O 2 I O 1 1 V B 4 V B 0 1

Trial 8 V O 1 U P 0 V B 1 2 I P 2 V P 1

Trial 9 V O 0 U P 0 I P 2 I P VUV V B 1 2

Trial 10 V O 0 U P 0 I P 2 V P 1 U B 4

Table 5.2: Feature variables selected by proposed algorithm (full)

Cross Validation Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Trial 1 V WM×V P I B 5 V P VUV U B 4 I P VUV

Trial 2 V O 2 I B 6 1 REF 1 I P VUV U O 3 1

Trial 3 U O 2 V O 2 I B 5 I WM×I P V O 2 2

Trial 4 V O 1 I B 4 V WM×V P V B 4 I P VUV

Trial 5 V RM×V P I B 5 V O 0 V B 4 I O 0 0

Trial 6 V WM×V P I B 5 U RM×U P REF 0 I P VUV

Trial 7 V O 2 I P 2 I P VUV V P 1 V B 3

Trial 8 V O 2 I B 4 REF 0 I B 2 REF 1

Trial 9 U O 2 I P VUV I O 1 V O 1 U B 3

Trial 10 V O 1 I B 4 U O 3 V B 5 1 I B 3 1
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Table 5.3: Features selected by MARS

Cross Validation Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Trial 1 I P VUV V O 2 I O 5 I O 4 0 V B 2

Trial 2 V O 2 I P VUV I O 5 U P 0 I O 4 0

Trial 3 V O 2 I P VUV I O 5 U P 0 V O 0

Trial 4 I P VUV V O 2 I O 5 V B 2 I O 0

Trial 5 I P VUV I O 5 I O 0 V B 2 I O 4 0

Trial 6 I P VUV V O 2 I O 0 I O 5 V B 2

Trial 7 I P VUV I O 5 I O 0 V O 2 I O 4 0

Trial 8 I P VUV I O 0 I O 5 I O 4 0 V O 0

Trial 9 V O 2 I P VUV I O 5 V O 0 V B 2

Trial 10 I P VUV I O 0 I O 5 I O 4 0 V B 2

in R of 26.95% and 38.94 %, and an average decrease in RMSE of 13.93% and 24.16%

is attained when compared to CART and MARS, respectively. An average improve-

ment in R of 31.10% and 20.01%, and an average decrease in RMSE of 19.07% and

11.96% is achieved for full GMM estimators.

If multiple survivor search is carried out, performance can be improved. There

is, however, a linear increase in design complexity. The 1-survivor algorithm needs

to invoke the EM algorithm M
∑D

i=1(n− i + 1) times, n being the total number of

candidate features and D the desired number of features to be selected. Here, n = 212

and D = 5. By using the N -survivor approach, the number of EM invocations

increases to NM
∑D

i=1(n− i + 1). A simple experiment is carried out with N = 2

and the selected features are presented in Table 5.6. The performance increase over

single survivor search is shown in Table 5.7. An improvement of up to 7.21% in R and

a reduction of 3.12% in RMSE can be attained by using 2-survivor search relative

to single-survivor search. Note that for trial 2 and trial 8, both 1- and 2- survivor

algorithms select the same five features.
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Table 5.4: Performance comparison (diagonal)

Cross Validation Proposed CART

Trials R RMSE R %↑ RMSE %↓

Trial 1 0.8578 0.4390 0.8083 25.82 0.5016 14.25

Trial 2 0.8539 0.4623 0.8216 18.11 0.5036 8.93

Trial 3 0.8530 0.4479 0.7972 27.51 0.5068 13.15

Trial 4 0.8732 0.4448 0.8206 29.32 0.4930 10.83

Trial 5 0.8416 0.4585 0.7937 23.22 0.5126 11.79

Trial 6 0.8694 0.4266 0.8184 28.08 0.4903 14.93

Trial 7 0.8740 0.4305 0.8171 31.11 0.5111 18.72

Trial 8 0.8656 0.4409 0.8171 26.52 0.4996 13.31

Trial 9 0.8521 0.4623 0.7879 30.27 0.5400 16.80

Trial 10 0.8677 0.4341 0.8122 29.55 0.5061 16.58

Average 26.95 13.93

MARS

R %↑ RMSE %↓

Trial 1 0.7926 31.44 0.5206 18.58

Trial 2 0.7465 42.37 0.5577 20.63

Trial 3 0.7903 29.90 0.5140 14.75

Trial 4 0.7661 45.79 0.5821 30.86

Trial 5 0.6863 49.51 0.6151 34.15

Trial 6 0.7479 48.20 0.5709 33.82

Trial 7 0.8089 34.07 0.5243 21.78

Trial 8 0.8043 31.32 0.5159 17.01

Trial 9 0.8000 26.05 0.5255 13.67

Trial 10 0.7313 50.76 0.5919 36.35

Average 38.94 24.16
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Table 5.5: Performance comparison (full)

Cross Validation Proposed CART

Trials R RMSE R %↑ RMSE %↓

Trial 1 0.8931 0.3830 0.8404 33.02 0.4627 20.81

Trial 2 0.8917 0.4005 0.8498 27.90 0.4656 16.25

Trial 3 0.8835 0.3930 0.8452 24.74 0.4480 13.99

Trial 4 0.9023 0.3907 0.8648 27.74 0.4557 16.63

Trial 5 0.8852 0.3923 0.8322 31.59 0.4671 19.06

Trial 6 0.8919 0.3889 0.8498 28.03 0.4531 16.50

Trial 7 0.8953 0.3955 0.8538 28.39 0.4626 16.96

Trial 8 0.9075 0.3644 0.8574 35.13 0.4467 22.58

Trial 9 0.8963 0.3889 0.8329 37.94 0.4846 24.61

Trial 10 0.9047 0.3708 0.8498 36.55 0.4572 23.30

Average 31.10 19.07

MARS

R %↑ RMSE %↓

Trial 1 0.8694 18.15 0.4209 9.89

Trial 2 0.8816 8.53 0.4168 4.06

Trial 3 0.8651 13.64 0.4218 7.32

Trial 4 0.8923 9.29 0.4094 4.78

Trial 5 0.8336 31.01 0.4657 18.71

Trial 6 0.8742 14.07 0.4173 7.30

Trial 7 0.8900 4.82 0.4060 2.65

Trial 8 0.8749 26.06 0.4196 15.14

Trial 9 0.8553 28.33 0.4541 16.76

Trial 10 0.8229 46.19 0.4931 32.98

Average 20.01 11.96
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Table 5.6: Feature variables selected by 2-survivor search (full)

Cross Validation Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Trial 1 V O 2 I B 6 I P VUV REF 0 V RM×V P

Trial 2* V O 2 I B 6 1 REF 1 I P VUV U O 3 1

Trial 3 U O 2 V B 1 I O 0 I WM×I P V O 0

Trial 4 V O 1 I O 0 1 U P 0 I B 5 1 I P VUV

Trial 5 V RM×V P I B 6 U RM×U P I O 0 1 REF 1

Trial 6 V O 2 I B 5 I P VUV U B 4 I B 1 2

Trial 7 V O 2 I O 0 1 U P 0 I B 5 I P VUV

Trial 8* V O 2 I B 4 REF 0 I B 2 REF 1

Trial 9 U O 2 I P VUV I RM×I P V O 2 U B 4 1

Trial 10 V O 1 I B 4 U B 4 V B 0 1 I P VUV

Table 5.7: Performance improvement of 2-survivor search relative to 1-survivor

Cross Validation R %↑ RMSE %↓

Trial 1 0.8987 5.23 0.3736 2.96

Trial 2* 0.8917 0.00 0.4005 0.00

Trial 3 0.8919 7.21 0.3807 3.13

Trial 4 0.9072 5.02 0.3818 2.27

Trial 5 0.8886 2.96 0.3869 1.38

Trial 6 0.8979 5.55 0.3790 2.55

Trial 7 0.9020 6.39 0.3841 2.88

Trial 8* 0.9075 0.00 0.3644 0.00

Trial 9 0.8991 2.71 0.3839 1.29

Trial 10 0.9085 3.98 0.3638 1.89
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Chapter 4 highlights one of the major drawbacks of using CART and MARS for

speech quality estimation and consists in the fact that features selected by the data

mining algorithms have significant correlation amongst them. Diagonal covariance

GMM estimators, consequently, present only modest performance figures. By looking

back at Tables 5.4 and 5.5 it can be seen that CART selected features outperform

MARS selected features with diagonal GMM estimators. This does not hold true

when using full GMM estimators, suggesting that MARS selected features are more

correlated.

Furthermore, in Chapter 4, a prominent vertical alignment of points in the sub-

jective MOS versus estimated MOS scattered plots was shown for diagonal GMMs

(vide Figure 4.2). This suggested that full covariance GMM estimators were needed

in order to predict the residual variation in subjective MOS. If one insists on using

diagonal GMM estimators, the problem is mitigated by using the proposed feature

selection algorithm. For this experiment, Figures 5.2 (a) and (b) illustrate scattered

plots for a GMM estimator trained on features selected by MARS and a GMM es-

timator trained on features selected by the proposed algorithm, respectively. Note

that the vertical alignment of points is considerably less accentuated than MARS,

reflecting the performance improvements shown in Table 5.4. Observe in Figure 5.2

(a) the five discrete estimated MOS values associated with the five diagonal Gaussian

components (see (3.13)) are prominently indicated by the horizontal locations of the

vertical clusters. In this case, the weights in (3.13) serve the sole purpose of switching

between the five discrete values.
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Figure 5.2: Subjective MOS versus objective MOS for (a) MARS and (b) diagonal
GMM selected features
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Table 5.8: Performance comparison: PESQ and proposed algorithm

Cross Validation PESQ 1-Survivor (full) 2-Survivor (full)

Trials R RMSE ↑%R ↓%RMSE ↑%R ↓%RMSE

Trial 1 0.8568 0.4643 25.35 17.51 29.26 19.53

Trial 2 0.8535 0.4871 26.08 17.78 26.08 17.78

Trial 3 0.846 0.4809 24.35 18.27 29.81 20.84

Trial 4 0.867 0.467 26.54 16.33 30.23 18.24

Trial 5 0.8449 0.4811 25.98 18.46 28.18 19.58

Trial 6 0.8564 0.4668 24.72 16.69 28.90 18.81

Trial 7 0.8738 0.4633 17.04 14.63 22.35 17.09

Trial 8 0.8581 0.4801 34.81 24.09 34.81 24.09

Trial 9 0.8608 0.4695 25.5 17.17 27.51 18.23

Trial 10 0.8623 0.4604 30.79 19.46 33.55 20.98

Average 26.12 18.04 29.07 19.52

5.3.2 Experiment II

In this experiment we compare performance of the GMM-based voice quality predictor

to the performance of PESQ with the mapping proposed in [27]. Table 5.8 summarizes

the performance figures; the column labelled “↑%R” shows improvement in R by

using a 5-component GMM estimator, trained with features selected by the proposed

algorithm. Similarly, “↓%RMSE” denotes decrease in RMSE relative to PESQ.

Full GMM estimators outperform PESQ by 26.12% and 18.04% in R and RMSE,

respectively. With 2-survivor search, an average improvement of approximately 29%

in R and an average decrease of 19.51% in RMSE is attained. Additionally, it is

important to note that, despite lower performance, full GMM estimators trained on

features selected by CART or MARS also outperform PESQ, as was shown in [7].
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Table 5.9: Performance comparison: PESQ and proposed algorithm – unseen data

GM Database I Database II

Models ↑%R ↓%RMSE ↑%R ↓%RMSE

GMM 1 -5.40 34.54 -6.50 15.31

GMM 2 -9.51 34.72 -11.56 1.25

GMM 3 -4.50 44.91 -5.03 25.79

GMM 4 -4.55 48.50 -5.69 23.17

GMM 5 -2.68 38.78 -4.04 26.15

GMM 6 -8.08 34.52 -10.47 5.37

GMM 7 -9.06 32.47 -10.40 7.67

GMM 8 -4.24 51.37 -4.23 27.97

GMM 9 -2.78 52.24 -3.21 33.17

GMM 10 -3.22 42.02 -4.90 23.14

Average -5.40 41.41 -6.60 18.90

5.3.3 Experiment III

In this last experiment, the proposed algorithm is tested on unseen data, i.e., data that

has not been used in the training of the GMM predictors. Two unseen test databases

are used, each comprised of approximately 3000 subjectively scored speech file pairs,

with speech under various degradation conditions. Table 5.9 shows increase in R

and decrease RMSE for the ten GM models found in the ten cross validation trials

as per experiment 1. As can be seen, for the first database the proposed algorithm

achieves an average 5.4% lower correlation when compared to PESQ. A 6.6% lower

R is achieved for the second database. However, for the first database, the proposed

algorithm reduces RMSE by an average 41%. For the second database, an average

decrease of 19% is attained. Recall from Section 4.3 that RMSE is a more realistic

measure of estimator performance.
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Figures 5.3 and 5.4 depict the objective MOS versus subjective MOS for the two

unseen databases. Data points in the graphs represent the per-condition MOS rating,

i.e., the average for all speech samples under the same degradation condition. Panels

(a) and (b) illustrate the cases for the proposed algorithm and PESQ, respectively.

The 95% confidence intervals are depicted as error bars, indicating the statistical

distribution of the model outputs on different speech samples under the same degra-

dation condition. Note how the proposed algorithm better predicts the quality of

noisy speech samples, i.e., samples that have subjective MOSs between 1 and 2.

5.4 Summary

This chapter has proposed a novel feature selection algorithm for speech quality es-

timation based on Gaussian mixture models. The algorithm is targeted to applica-

tions that make use of GMM estimators, as features are selected to minimize squared

GMM estimation errors. Moreover, the algorithm is capable of performing N -survivor

search, allowing for a tradeoff between complexity and performance to be adjusted via

the parameter N . Simulation results show that GMM estimators designed using the

proposed algorithm outperform two benchmark selection algorithms, with N -survivor

search incurring better performance. Furthermore, it has also been shown that fea-

tures selected by the proposed algorithm are suitable for diagonal GMM estimators,

which incur lower computational complexity. Lastly, a test on unseen data is carried

out and the proposed algorithm is capable of reducing RMSE by an average 41%

when compared to PESQ.
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Figure 5.3: Objective MOS versus subjective MOS for (a) proposed algorithm (b)
PESQ – Database 1.
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Figure 5.4: Objective MOS versus subjective MOS for (a) proposed algorithm (b)
PESQ – Database 2.



Chapter 6

Conclusions and Further Work

6.1 Conclusions

The evaluation of speech quality is of critical importance in today’s telephone net-

works, be it the plain old telephone system, wireless or voice over IP, mainly because

quality is a key determinant of customer satisfaction. Objective speech quality as-

sessment algorithms provide low-cost and online monitoring of voice calls, replacing

costly and time-consuming subjective listening tests. This thesis exploits the flexi-

bility and simplicity of Gaussian mixture models (GMMs) in designing simple, yet

effective predictors of perceived speech quality. A large pool of perceptual distortion

features is extracted from speech files. Initially, classification and regression trees

(CART), multivariate adaptive regression splines (MARS), and the sequential for-

ward selection (SFS) algorithm are used to sift out the most relevant variables from

the pool. The five most salient variables are used to construct good GMM estimators

of subjective listening quality.
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ITU-T’s perceptual evaluation of speech quality (PESQ), the current “state-of-

art” standard algorithm, is used to benchmark our proposed GMM-based voice quality

predictor. This thesis shows that when using diagonal Gaussian components, the

improvement over PESQ is more modest than when full Gaussian components are

used. Careful investigation suggests that this is due to the fact that the five most

salient feature variables selected by the data mining techniques are correlated and

the use of only five diagonal Gaussian components is insufficient to compensate for

this correlation. Furthermore, the features selected by the data mining schemes limit

the performance of the proposed GMM-based voice quality predictor. GMMs are

later used to devise a novel feature selection algorithm that directly optimizes GMM

prediction performance.

The GMM-based sequential feature selection algorithm performs N -survivor search,

trading complexity and accuracy via the parameter N . It is shown that GMM es-

timators, trained on features selected by the proposed algorithm outperform GMM

estimators trained on features selected by CART or MARS. At the cost of extra com-

putations, N -survivor search (here N = 2 was used) can improve performance by

as much as 7.21% in correlation. Comparisons with PESQ show that the proposed

algorithm incurs, on average, 26.12% higher R and 18.04% lower RMSE. Lastly, a

test on unseen data is carried out and the proposed algorithm is capable of reducing

RMSE by an average 41% when compared to PESQ.

6.2 Further Work

This thesis has introduced a new paradigm in speech quality assessment: the use

of simple, yet robust Gaussian mixture models for intrusive quality measurement.
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As mentioned previously, intrusive measurement involves injecting a clean speech

signal into a piece of equipment or a call connection and measuring the quality of the

degraded speech signal at the output or receiving end. Non-intrusive measurement

is a far more challenging approach to objective measurement – it does not require

the injection of a clean reference signal to assist in the prediction of speech quality.

Non-intrusive measurement is an emerging research field that once matured will allow

for low-cost and continuous voice quality monitoring.

In [65], the first steps towards migrating GMMs to non-intrusive quality assess-

ment are given. The approach compares perceptual features extracted from degraded

speech to an artificial reference model. This model employs GMMs trained on fea-

tures extracted from a dataset of clean speech signals and the degree of mismatch is

used as an indicator of speech quality. Initial simulations show an accurate and yet

low-complexity speech quality measurement algorithm.

Within the intrusive quality measurement framework, improvements can be found

by defining new and improved features. It is known that “a classifier is only as good

as its input features.” The work presented here strives to demonstrate that simple yet

effective voice quality predictors can be found and gain in performance is apparent if

better features are proposed. Hopefully this thesis serves as incentive for the research

on such improved features. Moreover, the schemes proposed here make use of features

that are not dependent on the phase of the speech signal. In [66], phase information

is shown to be important in the evaluation of sound quality. A possible expansion

of the work presented here could be to experiment the usefulness of phase-dependent

features and see if speech quality prediction accuracy can be increased.
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Appendix A

Feature Description

The perceptual features used in this thesis are defined as follows. The first letter,

denoted by T in a variable name, gives the frame type: T=I for “Inactive”, T=V

for “Voiced”, and T=U for “Unvoiced”. The subband index is denoted by b, with

b ∈ {0, . . . , 6} indexing from the lowest to the highest frequency band if the index

is natural, or from the highest to the lowest distortion if the index is rank-ordered.

The frame distortion severity class is denoted by d, with d ∈ {0, 1, 2} indexing from

lowest to highest severity. With the above notations, the feature variables are:

• T P d : percentage of T frames in severity class d frames

• T P : percentage of T frames in the speech file

• T P VUV : ratio of the number of T frames to the total number of active (V

and U) speech frames

• T B b : distortion for subband b of T frames, without distortion severity clas-

sification, e.g., I B 1 represents subband 1 distortion for inactive frames
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• T B b d : distortion for severity class d of subband b of T frames, e.g., V B 3 2

represents distortion for subband 3, severity class 2, of voiced frames

• T O b : distortion for ordered subband b of T frames, without severity classifi-

cation, e.g., U O 3 represents ordered-subband 3 distortion for unvoiced frames,

without distortion severity classification

• T O b d : distortion for distortion class d of ordered subband b of T frames,

e.g., U O 6 1 represents distortion for severity class 1 of ordered-subband 6 of

unvoiced frames

• T WM d : weighted mean distortion for severity class d of T frames

• T WM : weighted mean distortion for T frames

• T RM d : root-mean distortion for severity class d of T frames

• T RM : root-mean distortion for T frames

• REF 1 : high-frequency spectral energy of reference signal

• REF 0 : lowest-frequency spectral energy of reference signal

The weighted mean of the 7 subband distortions is calculated using the weights

wi =























1.0, for 0 ≤ i ≤ 4

0.8, for i = 5

0.4, for i = 6.

(A.1)

The root-mean distortion is calculated in the following manner. Each frame has

a 7-band loudness distortion vector (d0 d1 . . . d6) where di is the difference between
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the loudness of the ith band of the reference signal and the loudness of the ith band

of the degraded signal. If the distortion of a given frame j, j = 1, . . . , Nf , is given by

Dj =
6

∑

i=0

di,

then the root-mean distortion (DRM) is given by

DRM =

√

∑

j Dj

7 ∗Nf

. (A.2)


